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Abstract 

 
The U.S. federal government maintains more than 500,000 facilities in the United 

States and around the world, most of which are heavily dependent on fossil fuels to 

produce electricity.  Within the federal government, the Department of Defense (DOD) 

spends over $2.5 billion per year on facility energy consumption which makes them the 

largest single energy consumer in the United States.  Therefore, federal energy 

conservation goals focus on aggressively reducing energy consumption by reducing the 

energy demand at the facility level within the next 20 years. 

Daylighting is a passive solar energy strategy at the facility level that leverages 

load avoidance by relying on windows and skylights to reduce building electrical lighting 

load; which accounts for approximately $15-23 billion annually in energy consumption.  

Our research findings show that electrochromic windows have the lowest energy 

consumption compared with other daylighting strategies appropriate for building retrofit.  

However, the prohibitive initial investment cost of electrochomic windows do not make 

them economically viable; therefore, the only daylighting strategy currently viable for Air 

Force facilities, based on our simulations, is the advanced daylighting control system.   

We found that economic incentive policies currently available for other passive 

solar technology could make emerging daylighitng technology, such as electrochromic 

windows, viable.  Finally, we demonstrate the robustness of probabilistic life-cycle cost 

model using Monte Carlo simulation that could provide significantly more information 

compared to the current deterministic tool, BLCC 5, used for federal energy projects.   
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DAYLIGHTING STRATEGIES FOR U. S. AIR FORCE OFFICE FACILITIES: 

ECONOMIC ANALYSIS OF BUILDING ENERGY PERFORMANCE AND LIFE-

CYCLE COST MODELING WITH MONTE CARLO METHOD 

 

Introduction 

The federal government maintains more than 500,000 facilities in the United States and 

around the world, most of which are heavily dependent on fossil fuels to produce electricity 

(Pratt, 2006).  In fiscal year (FY) 2002, federal facilities used 316.8 trillion British Thermal 

Units (BTU1) of energy at a cost of $3.7 billion, making the federal government the single 

largest energy consumer in the United States (Garman, 2003).  The U.S. Department of Defense 

(DOD) spends over $2.5 billion per year on facility energy consumption; they are the largest 

single energy consumer in the United States, accounting for nearly 80% of total federal energy 

use (ODUSD, 2005).  Renewable energy use in the context of national security, environmental 

stewardship, and energy conservation has introduced federal and state regulations that have 

shaped the national psyche as well as given birth to the “green technology2

A special report in the 19 June 2008 issue of The Economist magazine stated that many 

innovative companies that changed the face of the world economy through the dot com 

phenomenon are beginning to turn their attention to renewable energy, venerable names such as 

Google and Sun Microsystems, for example.  The editors of the magazine contend the green 

” industry. 

                                                 
1 A unit of energy used in the power, steam generation, heating and air conditioning industries.  "BTU" is used to describe the 
heat value (energy content) of fuels, and also to describe the power of heating and cooling systems, such as furnaces, stoves, 
barbecue grills, and air conditioners. The unit MBTU was defined as one thousand BTU presumably from the Roman numeral 
system where "M" stands for one thousand (1,000). This is easily confused with the SI mega (M) prefix, which adds a factor of 
one million (1,000,000). To avoid confusion many companies and engineers use MMBTU to represent one million BTU; 
alternatively a “therm” is used representing 100,000 or 105 BTU, and a quad as 1015 BTU.  
(Source: http://en.wikipedia.org/wiki/British_Thermal_Units) 
2 It encompasses a continuously evolving group of methods and materials, from techniques for generating energy to non-toxic 
cleaning products.  Most notable examples within this growing industry include energy, green building, environmentally 
preferred purchasing, green chemistry, and green nanotechnology.  (Source: http://www.green-technology.org/what.htm) 

http://en.wikipedia.org/wiki/Energy�
http://en.wikipedia.org/wiki/Energy�
http://en.wikipedia.org/wiki/Power_%28physics%29�
http://en.wikipedia.org/wiki/SI�
http://en.wikipedia.org/wiki/Mega-�
http://en.wikipedia.org/wiki/Therm�
http://en.wikipedia.org/wiki/Quad_%28energy%29�
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industry could be the next technological revolution (The Economist, 2008).  There is preliminary 

discussion within the Intergovernmental Panel on Climate Change (IPCC3

During the energy crisis and in response to energy security concerns of the mid-1970s, 

the U.S. passed legislation to decrease the nation’s dependence on foreign oil and increase 

domestic energy conservation and efficiency (Gielecki, et al., 2001).  The most important law 

promoting renewable energy in the 1990s was the Energy Policy Act (EPACT) of 1992 (EIA, 

2005).  This act provided a quantitative goal over an intermediate duration of time (10 years) to 

achieve definitive conservation guidance.  This law has since been updated with EPACT 2005, 

) that could 

recommend a tax of $20-$50 for every ton of carbon dioxide generated to pay for environmental 

damage (The Economist, 2008).  Recent federal U.S. policies that have mandated and shaped the 

energy conservation strategy include three key legislations: The Energy Policy Act (EPACT) of 

2005, Executive Order (EO) 13423, and Energy Independence and Security Act (EISA) of 2007.   

However, we argue that the federally mandated energy goals could be inconsistent with 

economic feasibility of emerging renewable energy technology.  Some of these emerging 

technologies could help meet the energy goals but due to high initial investment costs they are 

not economically viable without government subsidy.  Many renewable technologies have had to 

rely on economic incentives in the form of tax credits to help them advance; however, they are 

not universally applied and could be failing to support those technologies that could be 

beneficial, such as daylighting technology.    The background for the energy conservation and 

strategy for the federal government is discussed next.   

 
Background 

                                                 
3 A scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations 
Environment Programme (UNEP).  It includes hundreds of scientists all over the world contribute to the work of the IPCC as 
authors, contributors and reviewers.  
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which defines conservation goals out to 2015 (EIA, 2005).  EPACT 2005 was joined by two 

other key statutes, EO 13423 and EISA 2007 to form the federal energy management policy. 

For the DOD, energy conservation does not mean simply turning off the switch and doing 

without. Rather, it means using resources more efficiently to provide the same or even an 

improved level of benefits at lower cost (ODUSD, 2005). Conservation should help installations 

deal with resource limitations without reducing mission capabilities, productivity, or the quality 

of life for DOD personnel.  Furthermore, reducing energy use could reduce the amount of air 

pollutants resulting from the direct burning of fossil fuels and indirect burning when generating 

electricity.  For example, a 10% reduction in U.S. electricity use could cut annual carbon dioxide 

(CO2) emissions by over 200 million tons, sulfur dioxide (SO2) emissions by 1.7 million tons, 

and nitrogen oxide (NO) emissions by 900 thousand tons (ODUSD, 2005).   

Energy Management is defined by Turner (2001) as the regulation of energy, minimizing 

energy demand and consumption (Pratt, 2006).  Energy management can help improve 

environmental quality by reducing fossil fuel consumption, thus reducing emissions into the 

atmosphere of such substances as nitrogen oxides, sulfur oxides and carbon dioxide, which have 

been suggested to affect Global Warming as well as produce acid rain (EIA, 2005).   Energy 

policies are managed through the Federal Energy Management Program (FEMP) office that 

provide guidelines and interpretations of the federal mandates as they pertain to federal 

organizations.  DOE’s financial support of research within industry, universities, and national 

laboratories dedicated to renewable energy, such as Lawrence Berkeley National Laboratory 

(LBNL) and National Renewable Energy Laboratory (NREL), have  provided scientific support 

to boost emerging energy technology and policy.   
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For many years, researchers have been developing alternative technologies to fossil fuels 

to produce electricity such as solar panels, wind turbines, and geothermal plants to help reduce 

the cost of energy generation (Pratt, 2006).  These are “active systems” whose aim is to reduce 

the cost of electricity compared to traditional generation method by fossil fuel.   However, 

effective energy management should also reduce the energy demand, which could impact the 

energy expenditure more significantly.  This “passive systems” strategy, also known as load 

avoidance, focuses on mitigating the overall energy demand to reduce emission and reduce 

annual energy costs.   Daylighting is a form of passive system that relies on windows and 

skylights to reduce electrical lighting load in a building.  Windows and skylights have been 

found to account for approximately 30-50% of commercial energy consumption, which equates 

to approximately $15-23 billion annually (McHugh, et al., 1998).  USAF has used daylighting as 

an energy savings strategy in earlier studies (Holtz, 1990); and is pursuing it to meet future net 

zero building4

The methodology used for a net zero energy building in a passive solar system should 

focus on load avoidance rather than using renewable energy to generate electricity (McHugh, et 

al., 1998).  For example, traditional utility systems that are straining to meet peak demand load 

could benefit from various daylighting technology.  Reducing peak demand would lower 

generating capacity, which could significantly reduce electricity cost (Acton, et al., 1980).   

 requirements (USAF/A7CAE personal communication, 2008).   

One of the key components of harnessing daylighting in a facility is through various 

building components such as windows and skylights.  However, traditional windows and 

skylights have limitations such as unwanted heat gain and loss; this translates into wasted 

energy.  In 1990, the energy used to offset unwanted heat gains and losses through windows in 
                                                 
4 The general concept describes a building that can meet all their energy requirements from low-cost, locally available, 
nonpolluting, renewable sources (Torcellini, et al., 2006) 
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residential and commercial buildings cost the United States $20 billion; which was one-fourth of 

all the energy used for space heating and cooling (Ander, 2008).  

DOD’s current guidelines (CFR Title 10, 2000) and United Facilities Code (UFC5

These guidelines primarily pertain to the construction of new facilities (we define new 

facility as any facility that is less than 15 years old).  New facilities constitute only 25% of the 

USAF building inventory (USAF/A7CAI, 2008).  By retrofitting existing older buildings, the 

federal government could see a greater reduction in energy consumption.  However, currently 

there are limited studies for energy and cost savings for retrofits to existing USAF buildings 

(Pratt, 2006).  This situation is compounded by limited energy consumption data that is available 

from the Defense Utility Energy Reporting System (DUERS

) states 

that sustainable design shall be an integral part of every project and energy conservation is a 

primary goal of sustainable design (UFC 3-400-01, 2002).  Furthermore, the DOD Energy 

Manager’s Handbook states that passive solar designs, such as building orientation and window 

placement and sizing shall be implemented in a variety of building types and new facility 

construction (ODUSD, 2005).    

6

                                                 
5 Unified Facilities Criteria (UFC) documents provide planning, design, construction, sustainment, restoration, and modernization 
criteria, and apply to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance with 

) with respect to individual 

facilities.   And any energy strategy must be supported with an economic analysis to help 

decision makers ensure that federal funds would be invested wisely. 

USD(AT&L) Memorandum dated 29 May 2002. UFC are distributed only in electronic media and are effective upon issuance.  
Headquarters, United States Army Corps of Engineers (HQUSACE), Naval Facilities Engineering Command (NAVFAC), and 
Air Force Civil Engineer Support Agency (AFCESA) are responsible for administration of the UFC system. Points of contact and 
procedures for the development and maintenance UFC documents are prescribed in the latest edition of MIL-STD-3007.  
(Source: http://65.204.17.188/report/doc_ufc.html) 
6 An automated management information system with which the Department of Defense monitors its supplies and consumption 
of energy. It was originally fielded in February 1974 as the Defense Energy Information System (DEIS) to respond to the need to 
manage DoD energy resources more closely in the aftermath of the 1973 Arab oil embargo. It is primarily used as an energy 
management tool, providing information about the Department of Defense's inventory and consumption of utility energy. 
(Source: DoD 5126.46-M-2, November 1993) 

http://www.hnd.usace.army.mil/TECHINFO/UFC/052902_SignedUFCImplementationMemo.pdf�
http://www.wbdg.org/pdfs/milstd3007.pdf�
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The primary purpose of energy and economic analysis (EA) of potential energy 

conservation projects is to help make decisions.  Risk and uncertainty is analyzed through 

sensitivity analysis as part of the EA.  Currently, EAs are completed through deterministic tool 

available from National Institute of Standard and Technology (NIST7) called Building Life-

Cycle Cost (BLCC8

1. Which daylighting strategy is most energy efficient for a USAF office facility: advanced 

daylighting control system with traditional windows, skylights with traditional windows, 

EC window system, or full daylighting strategy using EC window systems with 

skylights? And how does climate affect the different daylighting strategies? 

) 5 program.  It provides two economic factors that are currently used by 

decision makers to determine project approval, the savings-to-investment ratio (SIR) and simple 

payback (SPB).   Our study investigates three different components of an energy project: energy 

savings potential, economic viability, and effective economic decision making.  The specific 

research questions that will be answered through our study are discussed in the next section. 

 
Research Objectives and Research Questions 

 Our research focuses on the possible energy savings of retrofitting different daylighting 

technologies into existing USAF facilities then determining its economic viability using a life-

cycle cost analysis (LCCA) model.  We explore policy implications of making emerging 

technologies more viable and demonstrate the robustness of probabilistic LCCA model using 

Monte Carlo simulation.  Specifically, our study answers the following research questions:  

2. Which daylighting strategy is most economically viable for an USAF office facility? 

                                                 
7 Agency of the U.S. Commerce Department’s Technology Administration.  Conducts basic and applied research in the physical 
sciences and engineering, and develops measurement techniques, test methods, standards, and related services  (Fuller, et al., 
1996). 
8 Provides comprehensive economic analysis of proposed building capital investments. BLCC is especially useful for evaluating 
energy and water conservation projects in buildings. Required by Federal Energy Management Program office (Paradis, 2007) 
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3. Which input cost factor affects the economic viability of emerging daylighting 

technology: utility rate, peak demand cost, or initial investment cost?  

4. Is there significant difference in using discounted payback versus simple payback that 

could affect decision making? Do other economic factors provide additional insight? 

5. For the non-economically viable daylighting technologies, are there economic policy 

measures that could make them economically viable? 

6. What are the capabilities that make the Monte Carlo life-cycle cost analysis model more 

robust than the deterministic model BLCC 5?  What type of insight can the added 

robustness provide for the USAF decision maker? 

 
Hypothesis 

 We hypothesize that Electrochromic (EC) windows would be best energy performers 

while skylights would be the worst.  In general, daylighting strategy should perform better in 

warmer climates than colder climates.  And any daylighting technology currently not 

economically viable could be made viable by using economic incentives that are currently 

available for other passive solar technologies other than daylighting.  And our probabilistic life 

cycle cost model should be more robust than the current deterministic model.  Our research 

approach is discussed in the next section.   

 
Research Approach 

Previous research (Lee, et al., 2004) found that EC systems are generally applicable to 

buildings types with perimeter windows such as offices, schools, some mercantile and service 

buildings, and some health care facilities. Furthermore, Lee, et al. (2004) found that EC systems 
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are less applicable to lodging, warehouse and storage buildings.  Therefore, our research focuses 

on an office facility that would be commonly found on any Air Force base. 

The proposed methodology for our research consists of using two simulation tools in a 

three part investigation.  The first part is an energy simulation of a prototypical USAF office 

facility.  A prototypical facility defined by the experts at Air Force Civil Engineer Support 

Agency (AFCESA9

 The last part of our study explores an economic policy implementation for daylighting 

technology that may demonstrate energy savings but is not economically viable in the current 

market.  Based on historic effects of policy on other renewable technology (EIA, 2005), we 

simulate the effects of policy intervention.  In order to conduct our research using probability 

analysis, there are some assumptions that were made and are discussed in the next section. 

 
 
 
 

) is used to simulate the facility energy performance.  We used building 

energy simulation software called eQUEST (DOE-2) to model the energy performance of our 

prototypical USAF office facility.   

The second part of our study determines economic viability through a life-cycle cost 

analysis (LCCA) with Monte Carlo simulation using Crystal Ball® in MS® Excel.  We used 

actual cost data for the EC windows from the manufacturer, Sage Electrochromic, Inc.  And the 

Monte Carlo LCCA methodology is adapted from Enblemsvag (2003) and Liberman (2003).   

                                                 
9 The Air Force Civil Engineer Support Agency, headquartered at Tyndall Air Force Base, Fla., provides the best tools, practices 
and professional support to maximize Air Force civil engineer capabilities in base and contingency operations.  AFCESA is a 
field-operating agency of the Office of the Civil Engineer of the Air Force, Washington, D.C. (Source: http://www.afcesa.af.mil/) 
AFCESA is the focal point for the day-to-day energy and water conservation concerns and has the authority to communicate 
directly with the staffs of OSD and SAF on matters pertaining to facility energy and water conservation, as well as, solicit 
information to answer congressional and other inquiries.  AFCESA will centrally track and provide the guidance to the bases and 
commands, develop guidelines, provide the legislative requirements and include the data from the awarded ESPCs in the annual 
energy report  (ODUSD, 2005). 
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Assumptions 

Our research assumes probabilistic independence in our Monte Carlo probabilistic model. 

Probability independence means that the probability of an event occurring has no bearing on the 

probability of another event occurring. Using Crystal Ball® software to conduct Monte Carlo 

simulation should ensure independence through its random number generating capability.  This 

creates a random sampling effect during the LCCA which could provide a result that could be a 

representative of the population (McClave, et al., 2008) due to its ability to drown out the error 

with a large sample size, with individual iteration representing a sample.  With these 

assumptions, the scope of our research is discussed next.  

 
Research Scope 

Most of the buildings in the USAF inventory offer energy and cost saving opportunities. 

Retrofitting old energy systems can be an attractive investment; however, the initial capital 

outlay is often substantial and may not allow implementation of technology.  This is especially 

true for emerging renewable technology, such as EC windows.  And there is limited research on 

how these emerging daylighting technologies will perform in the USAF.  We investigate the 

energy savings of different daylighting technology. 

Our research is limited due to lack of metered facility energy use needed to validate our 

energy simulation results.  Therefore, our research findings and proposed model provides a 

foundation and strategic planning for future energy and economic analysis studies. And our 

findings are relative within the scope of our simulations.  

Current tool used for life-cycle cost analysis for energy projects uses a deterministic 

model which has known limitations in its ability to account for risk and uncertainty.  Our 
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research demonstrates the robustness of life-cycle cost analysis by using probabilistic modeling.  

We also demonstrate the robustness of our probabilistic model.  However, our findings are 

limited within the context of our simulations because data was unavailable for validating our 

model; and should not be generalized.  The significance of our study is discussed in the next 

section. 

 
Significance of Study 

Our research highlights the potential savings that could be found in retrofitting current 

facilities by implementing daylighting strategy to meet the net zero energy facility.  Most DOD 

buildings were designed and constructed before the energy crisis of 1973 (ODUSD, 2005).  

Architects and engineers at that time lacked the incentive to use electricity and gas efficiently, 

particularly because energy-efficient equipment usually required greater initial capital 

investment (ODUSD, 2005).  Also, energy-efficient equipment or systems were not available 

because of limited technology and market demand. Consequently, many old DOD buildings were 

designed to use lighting, HVAC equipment, and auxiliary fan motors that are inefficient by 

today's standards (ODUSD, 2005).  Therefore, the opportunities to upgrade these old systems to 

new efficient systems are available and must be pursued to meet the energy conservation goals 

mandated for federal facilities. 

However, few daylighting projects in the DOD have been implemented due to their poor 

predictability in energy and cost savings.  Yet a DOD study (Tri-Service Renewable Energy 

Committee, 2003) found that daylighting has the greatest potential for energy and cost savings. 

The DOD study (Tri-Service Renewable Energy Committee, 2003) was limited in that the 

daylighting recommendation only applied to large warehouses.  Our study explores daylighting 
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potential for USAF office facilities and compare traditional with emerging daylighting 

technology.  Furthermore, we investigate which daylighting technology is the most economically 

viable.  We also investigate the potential impact of economic policy intervention that could make 

daylighting technology viable, if they are not currently.  Our study also investigates the 

robustness of probabilistic analysis model and compares it with the deterministic tool, BLCC 5.    

Additional information could potentially be made available to the decision makers by using 

probabilistic tools that have not been traditionally used for DOD energy projects. 

 
Summary 

The DOD and USAF have been leaders in energy conservation through innovative 

implementation of available technology.  However, due to budget constraints and competing 

requirements compounded with aggressive federal energy conservation goals, energy projects 

need to focus on not only producing cheap energy but reducing the overall energy demand.  

Furthermore, economic policies aimed at providing incentives to allow promising renewable 

technology growth are explored.  Finally, we investigate the robustness of probabilistic models 

and compare it with the current deterministic model. 

The literature review in chapter 2 provides a summary of existing research pertaining to 

EC windows and their potential energy savings.  Chapter 2 also discusses an overview of LCCA 

and Monte Carlo simulation.  Chapter 3 discusses the methodology that was used in our study.  

Chapter 4 discusses our research results and accompanying analysis including the potential 

policy implementation and its effects. Finally, chapter 5 summarizes our results and our final 

recommendations.  
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II. Literature Review 

 

Chapter Overview 

This chapter discusses current literature on new daylighting technology.  We begin with a 

background of renewable energy starting with the history of the federal energy mandates and the 

current mandates that shape the energy management strategy for all federal facilities.  Next, the 

current response to the energy challenge in the DOD is discussed, which focuses on the USAF 

facility energy program.  Then, facility retrofit and the different types of daylighting 

technologies most appropriate for retrofitting are presented.  We then review life-cycle cost 

analysis (LCCA) and risk and uncertainty assessment as it relates to energy projects.  The 

discussion on uncertainty and risk includes a detailed background on probabilistic method of risk 

assessment through Monte Carlo simulation. 

 
Federal Renewable Energy Policy 

 During the energy crisis and in response to energy security concerns of the mid-1970s, 

the United States passed the National Energy Act of 1978 (NEA), which sought to decrease the 

nation’s dependence on foreign oil and increase domestic energy conservation and efficiency 

(Gielecki, et al., 2001). According to the U.S. Government Printing Office (1991), the Public 

Utility Regulatory Policies Act (PURPA) of 1978 and 1978 Energy Tax Act (ETA) set out to 

improve energy conservation and energy efficiency in the utilities sector.  However, the most 

important law promoting renewable energy in the 1990s was the Energy Policy Act (EPACT) of 

1992 (EIA, 2005).  This act provided a quantitative goal over an intermediate duration of time 

(10 years) to achieve definitive conservation guidance.  This law has since been updated with the 
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EPACT 2005, which defines conservation goals out to 2015 (EIA, 2005).  This was driven by a 

projected energy shortfall deemed critical for national security.  For example, the National 

Energy Policy published in 2001 by the White House states that the projected energy shortfall is 

showing a growing trend, shown in figure 1 (NEPDG, 2001). 

 

 

Figure 1. Projected Energy Shortfall (NEPDG, 2001) 
 
 

The projected growing energy shortage and climate change have spurred additional 

policy to EPACT 2005.  Executive Order (EO) 13423 and Energy Independence and Security 

Act (EISA) of 2007, details available in Appendix A, that have provided more aggressive 

guidelines for the federal energy conservation effort especially for federal facilities.  
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Renewable Energy and the Department of Defense 

 The DOD has made efforts to provide the necessary resources toward viable investments 

in renewable energy projects.  The DOD is focused on energy savings because they have been 

consistently the primary consumer of energy within the federal government (EIA, 2008), shown 

in Figure 2.  

 

 

Figure 2. Comparison of energy use between DOD and Non-DOD agencies (EIA, 2008). 
 
 

One of the challenges for DOD is trying to fiscally manage its primary mission of 

national defense with other requirements, such as energy conservation.  However, the increasing 

capability of renewable energy usage for the DOD can be observed both at the strategic and 

tactical level.  For example, Marine Major General Richard Zilmer, in Iraq, requested renewable 

energy sources like solar panels and wind turbines; so that soldiers in the field could produce 

more of their own energy on site and reduce the need for vulnerable fuel convoys (Walsh, 2008).  

In Afghanistan, spraying desert tents or temporary wooden structures with adhesive foam that 

sealed open spaces provided significant energy savings and comfort for the deployed military 

members.  In some locations Army engineers were able to reduce energy loss in the camps by 

50% by using the spray on tents (Walsh, 2008). The DOD has a growing list of renewable energy 
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projects that have been implemented.  Examples such as energy efficient housing in Fort Drum, 

geothermal power in Louisiana's Fort Polk, the world's largest solar community in Hawaii 

(Walsh, 2008) and North America’s largest solar photovoltaic power plant at Nellis Air Force 

Base (Sunpower, 2007).  The USAF has made efforts to lead the renewable energy 

implementation effort within the DOD as part of its strategic vision as exemplified by the Nellis 

Air Force Base photovoltaic array project.   

 The USAF has also demonstrated leadership in renewable energy relating to facilities.  It 

has mandated that starting from fiscal year 2009 (FY09), all Military Construction (MILCON) 

projects will meet the United States Green Building Council’s (USGBC) Leadership in Energy 

and Environmental Design (LEED) Green Building Rating System10 with silver certification 

rating.  Additionally, 5% of existing facilities will eventually have USGBC formal certification, 

which will increase to 10% by FY10 (Rocchetti, 2008).    Furthermore, the USAF has identified 

an average of $250 million per year energy investment throughout the Future Year Defense 

Program (FYDP)11

However, in addition to the federal mandates, there are added requirements within DOD 

that could add to the already aggressive goals.  For example, the Defense Science Board

, which includes 268 energy projects valued at $258 million.    

12

                                                 
10 LEED is a third-party certification program and the nationally accepted benchmark for the design, construction and operation 
of high performance green buildings.  LEED for New Construction and Major Renovations is designed to guide and distinguish 
high-performance commercial and institutional projects. 

 

Energy Report recommended in their 2008 energy report that all DOD facilities be required to meet 

11 The program and financial plan for the Department of Defense as approved by the Secretary of Defense. The FYDP arrays cost 
data, manpower and force structure over a 6-year period (force structure for an additional 3 years), portraying this data by major 
force program for DoD internal review for the program and budget review submission. It is also provided to the Congress in 
conjunction with the President’s budget. (Source: DoD Financial Management Regulation 7000.14-R) 
12 Under the provisions of the Federal Advisory Committee Act of 1972, as amended, shall provide the Secretary of Defense, the 
Deputy Secretary of Defense, the Under Secretary of Defense for Acquisition, Technology and Logistics, the Chairman of the 
Joint Chiefs of Staff and, as requested, other Office of the Secretary of Defense (OSD) Principal Staff Assistants, the Secretaries 
of the Military Departments, the Commanders of the Combatant Commands, independent advice and recommendations on 
scientific, technical, manufacturing, acquisition process, and other matters of special interest to the Department of Defense. 
(Source: http://www.acq.osd.mil/dsb/charter.htm) 

http://www.defenselink.mil/comptroller/fmr/02a/index.html�
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net zero facility standards by 2025 (Rocchetti, 2008).  A net zero energy facility describes a building 

that can meet all their energy requirements from low-cost, locally available, nonpolluting, renewable 

sources (Torcellini, et al., 2006).  Figure 3 shows utilities historic cost data for USAF facilities presented 

in constant dollar.  The trend shows reduced cost during the late 1990’s presumably due to the significant 

downsizing of USAF facilities as a result of Base Realignment and Closure (BRAC) that occurred during 

that time period.  However, since 2001, presumably after the attacks of 9/11 when U.S. entered the 

current Global War on Terrorism, the new mission requirements could be increasing the energy demand 

despite the overall smaller footprint of facilities in the USAF.  Additionally, as new weapon systems 

come on-line, such as the F-22 and C-17 aircraft programs, new supporting facilities at Air Force bases 

are required.   

 
Figure 3. Air Force facility operations cost from DUERS13

Our research focuses on daylighting technologies that leverage load avoidance strategy, 

which could reduce the overall facility utility cost and meet the net zero facility requirement.  

Four daylighting options for facility retrofit are considered for our study.  As stated previously, 

, current as of 25 Mar 08 (Rocchetti, 2008). 
 
 

                                                 
13 An automated management information system with which the Department of Defense monitors its supplies and consumption 
of energy. It was originally fielded in February 1974 as the Defense Energy Information System (DEIS) to respond to the need to 
manage DoD energy resources more closely in the aftermath of the 1973 Arab oil embargo. It is primarily used as an energy 
management tool, providing information about the Department of Defense's inventory and consumption of utility energy. 
(Source: DoD 5126.46-M-2, November 1993) 
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we contend that the greatest savings potential could be realized through effective facility retrofits 

and daylighting technologies could be one of the most economical strategies.  The discussion on 

facility retrofits using windows, the primary medium for daylighting, and its impact on energy 

conservation is discussed next. 

 
Optimizing Facility Retrofits for Energy Conservation 

According to Elder (2000) greater energy savings could be achieved through a more 

effective window technology for older facilities due to the fact that windows are the primary 

source of energy loss for buildings over 15 years, see figure 4.  The USAF facility inventory 

consists of 120,000 facilities (non-residential) that are on average over 30 years old and of those 

approximately 83,000 facilities (non-residential) are over 15 years old (USAF/A7CAI, 2008).  

Considering that a typical existing USAF facility has a life of 67 years, there could be significant 

time remaining for considerable energy savings cost.  Additionally, new construction should 

have more of the energy efficiency features already installed in order to meet the United States 

Green Building Council’s (USGBC) Leadership in Energy and Environmental Design (LEED) 

Green Building Rating System14

                                                 
14 LEED is a third-party certification program and the nationally accepted benchmark for the design, construction and operation 
of high performance green buildings.  LEED for New Construction and Major Renovations is designed to guide and distinguish 
high-performance commercial and institutional projects (Source: 

 that is now required for new USAF facilities.  Therefore, the 

opportunities for energy savings are greater for older facilities.  

http://www.usgbc.org/DisplayPage.aspx?CMSPageID=222). 

http://www.usgbc.org/DisplayPage.aspx?CMSPageID=222�
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Figure 4. Building Envelope Energy Losses for Facilities 15 Years or Older (Elder, 2000) 

 
 

 We investigate which daylighting technology associated with windows will produce the 

best energy savings.  The different types of daylighting technology in our study are: advanced 

daylighting control systems, electrochromic windows, and skylights.  Brief descriptions of these 

technologies are explained in the next section.   

 
Advanced/Integrated Daylighting Control Systems 
 
 Advanced/integrated daylighting control (ADC) systems work in conjunction with 

different fenestration such as windows and skylights to moderate the interior light intensity.  

ADCs can be part-time occupancy sensors or photo sensors that allow individuals to set preferred 

light levels or adjust automatically based on predetermined setting (Sachs, et al., 2004).  ADCs 

are often installed with dimming ballast for interior light fixtures and are tied in together as a 

system.  ADCs have been used in office workstations, private offices, conference rooms, 

classrooms, and hospitals (Sachs, et al., 2004).  When used with windows for perimeter space, 

ADCs are most effective 15 feet from exterior windows.  They are also available for use with 

skylights for top floor spaces.   

Windows
50%

Floor
3%

Walls
10%

Roof
16%

Infiltration
21%

Energy Loss Profile of Old Facilities



 

33 

 

 
Skylights  
 
 Skylights are “windows” placed on the horizontal or sloped portion of a roof.  Skylights 

allow more abundant amounts of light into a space than vertical glazing, but unless carefully 

designed, are often net-energy losers. A rule of thumb is that the more light allowed in, the more 

heat gain; and the more surface area, the more heat loss. In most instances, a smaller skylight 

within a splayed opening will accomplish the same lighting effect as a larger unit in a straight 

opening, but with reduced heat gain and loss.  Figure 4 shows some common designs.    

 
(a) 

 

 
(b) 

 
Figure 5. Examples of different skylights (www.veluxusa.com) 
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Skylights are available in glass (flat, tempered, laminated, reinforced) or plastic (acrylic, 

polycarbonate, fiberglass). Plastics offer the ability to be molded into many shapes, while glass 

offers a greater variety of performance characteristics (Deal, et al., 1998). Each glazing material 

is available in single- or multiple-paned units, and all standard frame types are available.  Both 

ADC and Skylights have been available daylighting technology (Deal, et al., 1998).  New to the 

commercial market since 2006, a daylighting technology that is showing considerable potential 

is electrochromic windows, which is discussed next. 

 
Electrochromic Windows 

 Electrochromic (EC) technology has been actively researched throughout the world for 

over thirty years, and examples of EC window prototypes have been demonstrated in a number 

of buildings in Japan and more recently in Europe and the United States (Carmody, et al., 2004).  

Lee, et al. (2000) found that EC windows promises to be the next major advance in energy-

efficient window technology, helping to transform windows and skylights from an energy 

liability to an energy source for the nation’s building stock.  And Pacific Gas & Electric 

identified daylighting as the single largest new opportunity for saving energy in commercial 

lighting today (Koti, et al., 2006).  And Klems (2001) stated in his research that technology 

generally considered to have the greatest architectural potential is EC glazing.  A typical EC 

window cross-section and functionality is shown in figure 6.  Basically, EC windows are capable 

of automatically altering their state to a shaded mode based on available light.  This reduces the 

heat gain generally experienced during the peak demand times throughout the day.  They are also 

manually controllable to shade to the building occupant’s desire; for example, allowing heat 

from sunlight in during cold winter months. 
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Figure 6. Typical Double-pane Sage® Electrochromic window (Sage Electrochromic, 2006a) 
 
 

Since 2006, commercially available EC window units have been available in the U.S. by 

Sage Electrochromics, Inc., which is the only certified manufacturer in the U.S. (Sage 

Electrochromics, 2006b).   A detailed description of how an EC window works is described in 

Appendix B, and a more detailed discussion on potential of how these technologies have been 

effectively used for daylighting is discussed next. 

 
Windows and Daylighting  

The building envelope includes different components such as windows, doors, building 

material (such as concrete, wood, or metal), and insulation (Deal, et al., 1998).  However, the 

focus of our research will be window technology systems because of their role as the primary 

medium for daylighting.   
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The use of daylighting through windows and skylights is not a new concept in building 

design.  Several skylight research (Arasteh, et al. (1984); Lee, et. al (1998); Dubois (1998); 

Tsangrassoulis, et.al. (1999); Klems (2001); Garcia-Hansen, et al. (Plympton, et al., 2000) 

(2002); Fedrizzi and Rogers (2002); Voss (2000)) has shown potential for skylights as effective 

daylighting strategy.  And the overall performance of glass elements in a building can be further 

enhanced when they are designed to be part of a complete façade system (Lee, et al., 2002); 

therfore, combining different window technology could be beneficial. The benefits of 

daylighting as well as its limitations have been documented but with innovations in glazing 

technology and new building façade design and fenestration strategy, building efficiency has 

been achievable, see figure 7. 

 
Figure 7. Examples of Effective Daylighting Implementation in a Floria Study (Othmer, 2002). 
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One of the main arguments used to justify using daylighting technology, especially the 

new EC windows, is their proven ability to reduce electricity consumption and electricity peak 

demand load.  Lowering the demand for electricity is considered by far the greatest benefit 

considering that the largest energy consumption in Air Force facility is electricity, shown in 

figure 8. 

 
Figure 8. USAF facility energy use by energy type (AFCESA, 2008). 

 

Therefore, daylighting could have significant benefit for USAF facilities that consume 

50% of their energy through electricity which equates to approximately $700,000 annually (Pratt, 

2006).  Stiles, McCluney, and Kinney (1998) found that lighting accounts for 40-50% of 

commercial energy consumption and McHugh, Burns, and Hittle (1998) stated that electric 

lighting and its associated cooling requirement consumed on average 30-50% of the energy used 

in a commercial building, which equates to approximately $15-23 billon annually.  A detailed 

discussion of how the different electricity cost, i.e. consumption cost versus peak demand cost, is 

described in Appendix C.  However, once all energy costs and savings are calculated, an 

economic analysis must be performed to determine the true cost of an engineering option.  
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Ultimately, it is the economic viability that will determine whether a project is approved or not.  

The federal energy program requires a life-cycle cost analysis as part of the decision making, 

which is discussed in the next section. 

 
Life-Cycle Cost Analysis for Federal Energy Projects 

The primary purpose of life-cycle cost analysis (LCCA) is to help make decisions.   The 

life-cycle cost analysis methods and procedures, as set forth in federal statute (10 CFR 436, 

2004) are to be followed by all federal agencies.  These standards and procedures are outlined in 

the National Institute of Standards and Technology (NIST15

To be competitive for funding, a project must typically have a payback of 10 years or less 

and have a Savings-to-Investment Ratio (SIR) of 1.25 or greater (ODUSD, 2005). Meeting these 

criteria does not ensure funding; however, because these programs have historically had many 

more requests than funds available these measures establish a baseline and projects are typically 

ranked by SIRs and funded until funding is exhausted (ODUSD, 2005).  

) Handbook 135: Life-Cycle Costing 

Manual for the Federal Energy Management Program (Fuller, et al., 1996); which has been 

adopted by the DOD (ODUSD, 2005).  For energy projects, the DOD components are 

encouraged to consider life cycle cost of aggregating energy efficiency projects with renewable 

energy projects where active solar technologies are appropriate.  This could be accomplished by, 

for example, combining the use of photovoltaic cells to generate low cost electricity with 

daylighting which would reduce the demand for the electricity.  A LCCA could help provide 

decision makers with the economic comparison among the different possible options and perhaps 

determine which funding method should be pursued. 

                                                 
15 Agency of the U.S. Commerce Department’s Technology Administration.  Conducts basic and applied research in the physical 
sciences and engineering, and develops measurement techniques, test methods, standards, and related services (Fuller, et al., 
1996). 
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In order to perform the necessary LCCA to determine the SIR and payback for the 

decision makers, FEMP requires NIST’s Building Life Cycle Cost (BLCC16

 

) 5 program (Fuller, 

et al., 1996).  BLCC 5 is a deterministic life-cycle cost tool that performs all the necessary 

calculation based on the cost input.  Most of the life-cycle cost calculations are internal and 

invisible to the user, but it follows the methodology outlined in NIST Handbook 135; which is 

discussed in the next section. 

 
Life-Cycle Cost Analysis Fundamentals 
 

Life-cycle cost is the total cost of owning, operating, and maintaining a system over its 

useful life, where costs are adjusted to their present value based on time of occurrence and time 

value of money, or discount rate (ODUSD, 2005). Life-cycle cost analysis (LCCA) refers to the 

process of calculating life cycle cost or other supplemental decision statistics based on the life 

cycle cost method. Given several mutually exclusive alternatives for accomplishing the same 

objective and assuming that all non-quantifiable costs and benefits are equivalent, the alternative 

with the lowest life-cycle cost over a study period is the best choice (ODUSD, 2005).  Figure 9 

illustrates a conceptual diagram of a tradeoff of higher investment cost to achieve lower total 

life-cycle cost, which is characteristic of most energy conservation projects. 

Figure 9. Life Cycle Cost Analysis Trade-off Example (ODUSD, 2005). 
                                                 
16  Provides comprehensive economic analysis of proposed building capital investments. BLCC is especially useful for evaluating 
energy and water conservation projects in buildings. Up to 99 alternative designs can be evaluated (Paradis, 2007) 
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 Equation 1 shows how to calculate life-cycle cost for a project (Fuller, et al., 1996).   It is 

essentially the sum of the costs minus the residual cost at the end of the project life.  However, 

our study uses only the investment cost and energy costs.  The other costs are either negligible or 

not applicable.  A full explanation of LCCA is available in Appendix D. 

 
 A basic LCC equation is as follows (Fuller, 2008): 

LCC = I + Repl – Res + E + W + OM&R + O                                   (eq. 1) 
 
Where, 
 
LCC = Total LCC in present-value (PV) dollars of a given alternative 
I = PV investment costs (if incurred at base date, they need not be discounted) 
Repl = PV capital replacement costs 
Res = PV residual value (resale value, salvage value) less disposal costs 
E = PV of energy costs 
W = PV of water costs 
OM&R = PV of non-fuel operating, maintenance and repair costs 
O = PV of other costs (e.g., contract costs for ESPCs or UESCs) 

 

There are typically three potential alternatives considered to conduct the LCCA for a 

USAF energy project: (1) status quo, (2) retrofit, and (3) new construction (AFMAN 32-1089, 

1996).  Our study will only consider the status quo and retrofit alternatives.  The status quo is the 

continued use and operation of existing facilities in their current condition (AFMAN 32-1089, 

1996).  The status quo alternative is considered the baseline and is used to compare the relative 

energy savings of the proposed alternatives.  The retrofit alternative involves renovating the 

existing facility to eliminate and/or reduce future energy costs by reducing fuel consumption or 

converting to a more efficient fuel. Various levels of improvements can be addressed as 

alternatives, including minimal correction of deficiencies to a comprehensive “gut and rebuild” 

effort.  Once the cost of the energy savings and retrofit is determined, economic factor for 
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determining viability are calculated.  Within DOD, these are savings to investment ratio and 

payback; which are discussed in the next section. 

Economic Factors for Decision Making 

Typically, the alternative with the lowest life-cycle cost over the study period is the 

appropriate choice for new construction projects (ODUSD, 2005).  However, there are two 

primary metrics that are used to determine the quality of a proposed project: payback period and 

savings-to-investment ratio. 

Savings-to-Investment Ratio (SIR) is a measure of economic performance for a project 

alternative that expresses the relationship between the present values of the savings over the 

study period to the present value of the investment costs (ODUSD, 2005).  It is a type of benefit-

to-cost ratio where the benefits are primarily savings, typical of energy projects. SIR is a relative 

measure of performance, meaning it can only be computed with respect to a designated base 

case.  The DOD Energy Manager’s Handbook states that SIR is the most useful metric to rank 

independent projects (ODUSD, 2005).  When faced with a large number of energy/cost saving 

projects, each of which meet DOD criteria for energy projects but where funding limits the 

number of projects that can be implemented, SIR should be used to rank the projects for funding 

(ODUSD, 2005).  Higher SIRs should be funded first, except in special circumstances that are 

discussed fully in NIST Handbook 135; and under DOD funding programs, SIR is typically 

required to be 1.25 or higher (ODUSD, 2005); next we discuss payback. 

The economic difference between two alternatives is expressed in terms of payback, or 

how long it takes to recover the additional investment cost (ODUSD, 2005).  The investment 

cost is the first cost of the proposed retrofit, and assuming uniform annual cash flows, the annual 

savings is the difference between the O&M costs before and after the retrofit.   Simple payback 
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(SPB) relates how long it takes to recover an initial investment in a cost-saving measure, 

assuming the annual savings remain constant and that the time value of money is unimportant. 

To calculate simple payback, divide the initial investment by the annual savings (ODUSD, 

2005). For example, a $1,000 investment that will save $200 per year has a simple payback of 

$1,000/$200 or 5.0 years.   

From an academic standpoint, SPB suffers from two key flaws. First, it assumes that 

$200 received 1 year from today is equivalent to $200 received 5 years from today.  Most 

organizations assign a higher value to dollars received sooner that those received later, based on 

their opportunity costs or their discount rate (ODUSD, 2005). The second flaw is that simple 

payback does not consider the effects of different lives (in length) of alternatives being 

considered. For example, investments A and B each cost $1,000 and save $200 per year; 

therefore both have a simple payback of 5.0 years, making them seem equally acceptable. 

However, if investment A has a useful life of 5 years and investment B has a useful life of 10 

years, investment B is obviously a better choice (ODUSD, 2005).  

Discounted Payback (DPB) is similar to SPB in that it expresses results in time to recover 

investment costs. However, savings are discounted to their present value based on the discount 

rate, making DPB consistent with LCC methods (ODUSD, 2005).  At lower discount rates, SPB 

and DPB values are closer together but as the discount rate increases, the DPB becomes longer 

because of the reduced value of future cash flows, while the SPB does not change because it is 

not based on the life-cycle cost method (ODUSD, 2005).  Furthermore, the DOD Energy 

Manager’s Handbook (ODUSD, 2005) states that for energy and water projects should use DPB.  

However, this is ambiguous guidance because some DOD forms (such as the ECIP 1391 report) 

refer to SPB as the required metric.   
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Furthermore, our discussions with USAF energy managers at all levels confirm that SPB 

is the standard used in USAF LCCA and BLCC 5 output also has SPB as one of the economic 

metric.  The DOD Energy Manager’s Handbook is the only codified clarification within any 

DOD guidance regarding of the use of DPB rather than SPB for LCCA.    

While simple payback is more useful to determine the type of funding it will pursue, 

private or public, it is generally accepted that SIR is the superior economic metric (ODUSD, 

2005).  However, both SIR and payback must also consider risk and uncertainty associated with 

energy projects.  Risk and uncertainties are generally more prevalent when historical and other 

data is either not available or limited.  This has application for emerging renewable technology 

where there is limited performance data but energy savings must be predicted.  Due to the 

importance of analyzing risk and uncertainty; it is discussed in the next section. 

 
Risk and Uncertainty Overview 

The federal publication in our literature review requires that risk and uncertainty be 

analyzed as part of any project’s economic viability.  NIST publication on uncertainty and risk 

(Marshall, 1988) lists variety of different possible analysis available such as breakeven analysis, 

sensitivity analysis, or simulation, for example.  Life-cycle cost analysis deals with costs and 

benefits occurring in the future and the future is unpredictable; therefore, assumptions and 

sensitivity analyses are prepared to account for uncertainties (AFMAN 32-1089, 1996).  

Furthermore, AFMAN 65-506 (2004) and AFMAN 32-1089 (1996) requires that at minimum a 

sensitivity analysis be conducted.   

The FEMP also recommends sensitivity analysis as the technique of choice for energy 

and water conservation projects (Fuller, et al., 1996).  FEMP recommends sensitivity analysis 
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due to its usefulness for identifying which of a number of uncertain input values has the greatest 

impact on a specific measure of economic evaluation.  Therefore, sensitivity analysis has the 

capability to help determine how variability in the input value affects the range of a measure of 

economic evaluation, and test different scenarios to answer "what if" questions (Fuller, 2008).  

However, all sensitivity analyses are not the same. 

Historically, breakeven (also called best case-worst case) and sensitivity analysis have 

been widely accepted because of their relative ease of use and effectiveness (Ragsdale, 2007).  

This is especially the case when many of the required calculations were completed by hand and 

with minimal computing power or knowledge (Ragsdale, 2007).  However, a more powerful 

approach to traditional risk and uncertainty analysis is becoming more prominent with increased 

computing power – simulation (Ragsdale, 2007).  Simulation can randomly generate sample 

values for each uncertain input variable X (independent variable) that can be used for the 

calculation of Y (dependent variable) which can be repeated multiple times to provide a 

probabilistic output distribution (Ragsdale, 2007).   

 One of the major benefits of deterministic techniques, such as what-if analysis or 

breakeven analysis, is that they are easily done without requiring additional resources or 

information. They produce a single-point estimate of how uncertain input data affect the analysis 

outcome (Fuller, 2008).  Probabilistic techniques, on the other hand, quantify risk exposure by 

deriving probabilities of achieving different values of economic worth from probability 

distributions for input values that are uncertain. This makes the probabilistic models more robust; 

however, they have greater informational and technical requirements than do deterministic 

techniques (Fuller, 2008).  Our research demonstrates the robustness of probabilistic models as a 
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potential alternative to the current deterministic models.  A discussion on how Monte Carlo 

simulation works is presented in the next section. 

 
Monte Carlo Simulation Method 

 Monte Carlo simulation (MCS) has been used extensively in many fields of study, 

including finance, physics, environmental risk, and energy systems research (Liberman, 2003).  

MCS methods rely on introducing uncertainty into the models because no uncertainty exists in 

them (Emblemsvag, 2003).  By modeling the uncertainty as it actually is based on historic or 

experimental data, MCS methods can be used to assess the impact of uncertainty.  Then, by 

conducting a statistical sensitivity analysis on a MCS run, one can identify which input variables 

are most important with respect to managing the uncertainty (Emblemsvag, 2003). So, by 

introducing uncertainty in the model, such as ± 10% bounded and symmetric uncertainty 

distributions, we can measure and rank the relative impact the various input variables have on the 

output variable (Emblemsvag, 2003).   A detailed mathematical derivation of Monte Carlo 

method is available in Appendix E. 

As stated previously, not all sensitivity analyses are equal. We contend that probabilistic 

sensitivity analysis used in MCS, for example, could be more robust compared to deterministic 

sensitivity analysis, which is discussed in the next section. 

 
Monte Carlo Simulation Sensitivity Analysis  
 

Uncertainty analyses using traditional methods are often used for deterministic models 

and like-wise are limited in their capability (Emblemsvag, 2003).  Computerized what-if 

analyses such as tornado charts and spider charts attempt to implement traditional uncertainty 

analysis by leveraging technology.  In tornado charts, the importance of the variable is 
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demonstrated by the width of the bar whereas in spider charts the slope of the line is used to 

represent the same information (Emblemsvag, 2003).  And since discrete analyses produce point 

estimates instead of distribution, the uncertainty analysis is equally limited (Emblemsvag, 2003).  

MCS provides a sensitivity chart with each output that provides an uncertainty related to the 

output probability distribution.   

Unlike the spider and tornado charts, the MCS sensitivity chart is generated by measuring 

the statistical response of the forecast variable given the uncertainty in all the input variables.  

Emblemsvag (2003) states that because statistical approaches do not rely upon direct 

relationships between input variables and forecast variables, such as the basis of deterministic 

models, complex systems can only be effectively modeled using probabilistic models.  He 

further contends that statistic models are the only ones capable of measuring relations between 

variables that are loosely coupled where setting up a system of equation would simply be 

unpractical or infeasible in complex systems.   

Therefore, MCS not only manages uncertainty in a cause-and-effect relations but also 

weak relations between multiple variables incapable in deterministic sensitivity analysis such as 

tornado and spider charts that rely on systems of equations (Emblemsvag, 2003).  Our research 

will demonstrate the robustness of our probabilistic analysis model and compare it with BLCC 5.   

 
Summary  

In this chapter we began discussing the federal mandates that have spurred energy 

conservation in the DOD: EPACT 2005, EO 13423, and EISA 2007.  Daylighting is a potential 

strategy that could help meet the federal energy goals.  However, there is limited research on 
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relative performance of different daylighting technologies; especially existing and emerging 

technologies that would be best for retrofit situations.   

Daylighting has its limitations due to dynamic variables such as human behavior.   For 

example, Inkarojirit (2005) and Rubins et al. (1978) found that building occupants do not use 

internal shading devices optimally.  Inkarojirit (2005) found that 93% of the population draw 

their manual blinds once at the first instance of visual discomfort (rather than thermal comfort) 

caused by glare, and then leave it there for the rest of the day (Lee, et al., 2006); negating any 

potential daylighting savings through the windows.  Emerging systems that can provide an 

alternate method of shading to reduce glare, thereby reducing human interaction, see figure 10, 

could significantly improve energy savings through daylighting; which will be investigated in 

our study.   

 
Figure 10. Commercially available EC glazing demonstrating ability to reduce glare (Sage Electrochromic, 2006a). 

    

One of the primary strategies for the USAF to meet the net zero facility requirement is to 

install skylights with automatic lighting controls (Personal Communication with USAF Energy 

Manger, 2008).  In certain situations skylights provide good natural light to perform tasks where 

such light is needed to accomplish a task effectively.  However, skylights have limited energy 
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savings based on climate and facility type.  For example, Kinney (2004) found that skylights are 

net thermal losers in the winter and account for substantial solar gains in the summer.  It is our 

contention that in lieu of using skylights as the primary daylighting strategy for the USAF, use of 

other window technology can yield better energy savings for administrative-type facilities using 

daylighting. 

Finally, the current federal guidelines mandate the use of life-cycle cost tool BLCC 5.  

However, this and others that are available through various federal agencies rely on deterministic 

analysis.  We argue that because energy projects often introduce new technology which could 

have higher levels of uncertainty and risk associated with them; deterministic analysis may be 

inadequate in accounting for uncertainty and risk.  Our research will investigate if probabilistic 

model is a more robust tool providing information otherwise unavailable using BLCC 5.  

Furthermore, our study will determine if SIR and SPB are sufficient for making economic 

decisions or if additional economic data are needed for better insight, such as discounted 

payback.  The methodology for our proposed research will be explained in the next chapter.     
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III. Methodology 

 
Chapter Overview 

This chapter describes the methodology to determine the relative cost savings and 

effectiveness of different daylighting strategy for a standard United States Air Force (USAF) 

office facility.  Our methodology is divided into three primary parts.  In Part I, we discuss the 

energy consumption analysis using DOE-2 building energy simulation software.  In Part II, we 

use life-cycle cost analysis to determine which daylighting strategy is most economically viable 

within our construct.  In Part III, we discuss the potential policy implication of daylighting 

technology that demonstrate energy savings but are not economically viable in the current 

market.  By simulating a policy intervention, we will demonstrate the potential for emerging 

technology that may be viable.  Part II and III will also demonstrate the robustness of our 

probabilistic model during the analysis. 

 
Part I: Energy Conservation 

 The first part uses building energy performance simulation software called eQUEST to 

calculate the energy consumption and the quantity of energy saved by incorporating the different 

daylighting strategies through a parametric analysis.  The energy consumption savings will be 

used to determine the associated energy cost savings in Part II. 

Step 1: Define Prototypical USAF Office Building 

Our research focuses on USAF office buildings.  The overall design specifications for the 

prototypical USAF office building was developed by Air Force Civil Engineer Support Agency 
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(AFCESA17) (Pratt, 2006).  However, where there was insufficient information on specific 

building layout needed for accurate simulation such as number of private offices or special 

functional space, facility information from the Air Combat Command (ACC) Facility Design 

Guide for Squadron Operations and Aircraft Maintenance Unit18

 

 was used.    The AFCESA 

historical construction cost book was also used to obtain the average size of squadron operations 

and maintenance buildings.  Based on information from the AFCESA historic cost book (2007), 

the average square foot of the prototypical building was changed to 36,000 square foot from the 

original 25,000 square foot used in the Pratt (2006) study.   A conceptual layout of interior space 

of the squadron operations facility from the ACC design guide is shown in figure 11. 

Figure 11. Sample Space Relationship Diagram for Squadron Operations Facility (Source: ACC Squadron 
Operations and Aircraft Maintenance Unit Design Guide) 

                                                 
17 The Air Force Civil Engineer Support Agency, headquartered at Tyndall Air Force Base, Fla., provides the best tools, practices 
and professional support to maximize Air Force civil engineer capabilities in base and contingency operations.  AFCESA is a 
field-operating agency of the Office of the Civil Engineer of the Air Force, Washington, D.C. (Source: http://www.afcesa.af.mil/) 
AFCESA is the focal point for the day-to-day energy and water conservation concerns and has the authority to communicate 
directly with the staffs of OSD and SAF on matters pertaining to facility energy and water conservation, as well as, solicit 
information to answer congressional and other inquiries.  AFCESA will centrally track and provide the guidance to the bases and 
commands, develop guidelines, provide the legislative requirements and include the data from the awarded ESPCs in the annual 
energy report  (ODUSD, 2005). 
18 http://www.wbdg.org/ccb/AF/AFDG/squadronoperations.pdf  

http://www.wbdg.org/ccb/AF/AFDG/squadronoperations.pdf�
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Other researchers (Huang and Franconi (1999); Apte, et al (2008); Lee, et al. (2004)) 

have used similar methodology in their research.  They used Commercial Buildings Energy 

Consumption Survey (CBECS19

Lee, et al (2004) also used a prototypical building without using CBECS data for testing 

the effectiveness of EC windows.  Lee, et al. (2004) study found that using CBECS data was 

inappropriate for emerging window technologies that have a unique blend of issues that 

complicates an assessment of potential impact.   Primary energy use databases such as CBECS 

do not have sufficient detail that would enable one to map these various parameters to energy-

savings potential with a relatively straightforward calculation (Lee, et al., 2004).   

) data using a prototypical facility to represent a highly variable 

population for commercial facilities.  Apte, et al (2008) adapted this methodology for a separate 

study of windows for commercial facilities.  Both these studies used DOE-2 simulation for the 

prototypical buildings with weather data corresponding to the five CBECS climate zones (Apte, 

et al., 2008).   

Furthermore, Apte, et al. (2008) found that energy impacts of windows, even at the 

building level, are difficult to quantify without extensive monitoring and instrumentation; 

therefore, computer energy simulations offer a far more practical approach (Apte, et al., 2008).  

Much like the commercial sector, the lack of facility specific energy data for USAF facilities 

make it difficult to provide validated conclusions for window performance of USAF facilities 

beyond simulation; therefore, our results are limited to the parameters within our research.  

Furthermore, our research expands previous DOD findings (Tri-Service Renewable Energy 

                                                 
19 A national sample survey that collects information on the stock of U.S. commercial buildings, their energy-related building 
characteristics, and their energy consumption and expenditures.  It contains 5,430 records, representing commercial buildings 
from the 50 States and the District of Columbia.  The survey is conducted quadrennially. (Source: 
http://www.eia.doe.gov/emeu/cbecs/contents.html)  

http://www.eia.doe.gov/emeu/cbecs/contents.html�
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Committee, 2003) which were limited to daylighting application for large “big-box” space such 

as warehouses and hangars.    

ACFESA is the USAF focal point for facility engineering and energy management effort.   

AFCESA also hosts the Defense Utility Energy Reporting System (DUERS) program and 

monitors energy use progress against mandated goals, determine periodic reporting requirements, 

and manage calls for all energy projects and the Annual Energy Report to Congress (ODUSD, 

2005).  Therefore, AFCESA’s expertise for USAF facility operations and energy management 

was used to develop the prototypical USAF office building.  The detail specification of this 

facility is shown in Appendix F and a conceptual drawing is shown in figure 12. 

 
Figure 12.  Conceptual drawing of a typical USAF Squadron Operations Facility (Source: Air Mobility Command 

Facility Design Guide) 
 
 
Step 2: Identify Input Factors 

We used the building energy simulations software eQUEST, a proprietary freeware that 

operates on the DOE-2 simulation “engine” (Hirsch, 2004).  There are three main categories of 

input data that were used for the simulation: (1) utility rate, (2) weather data, and (3) building 
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construction detail.  The utility rates were obtained from the AFCESA DUERS manager and are 

current as of August 2008.  The USAF bases, Table 1, used for simulation have been selected 

based on climate region and varying utility rates.  Table 1 also lists the respective utility rate and 

the climate zone identification.   

Table 1. USAF Bases with Utility Rates and Climate Zones (AFCESA, 2008). 

Air Force Base (AFB) Electricity Rate 
Natural Gas 

Rate 
Peak Demand Rate 
(Winter/Summer) 

Climate 
Zone 

 
$/kWh $/MBtu $/kW (CBECS) 

Ellsworth AFB $0.022887 $6.26 $11.69/$13.43 1 
Minot AFB $0.04173 $6.59 $8.33/$8.33 1 
Hilll AFB $0.04062 $6.47 $7.42/$10.29 2 
Offutt AFB $0.02294 $8.54 $8.50/$8.50 2 
Beale AFB $0.06327 $10.63 $7.14/$7.14 3 
Davis-Monthan AFB $0.06725 $13.27 $10.163/$10.163 3 
Wright-Patterson AFB $0.04918 $11.86 $7.96/$7.96 3 
Andrews AFB $0.10087 $14.07 $9.13/$9.13 3 
McGuire AFB $0.11567 $11.18 $7.18/$8.26 3 
Holloman AFB $0.05505 $8.14 $10.18/$11.80 4 
Pope AFB $0.06798 $10.85 $7.23/$12.32 4 
Barksdale AFB $0.05334 $9.26 $11.39/$11.39 5 
Eglin AFB $0.07548 $14.72 $7.01/$7.01 5 
 
 

Our research will simulate facilities that are located in representative climate zones 

defined by CBECS, shown in figure 13.  The CBECS climate regions are chosen instead of the 

climate regions as defined by the USAF Passive Solar Handbook (Holtz, 1990) because CBECS 

was found to be a more widely used database for climate regions throughout different researches 

(Huang and Franconi (1999); Huang et al. (1999); Lee,et al. (2004); Lee, et al. (2006); Apte, et 

al. (2008)) from our literature review. 
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Figure 13. 2003 CBECS Climate Zone Map.20

 The weather data used will be Typical Meteorological Year, version 3 (TMY3); which is 

developed by National Renewable Energy Laboratory (NREL) (Wilcox, et al., 2008).  A typical 

meteorological year (TMY) data set provides designers and other users with a reasonably sized 

annual data set that holds hourly meteorological values that typify conditions at a specific 

location over a longer period of time, such as 30 years (Wilcox, et al., 2008). TMY data sets are 

widely used by building designers and others for modeling renewable energy conversion systems 

(Wilcox, et al., 2008). Although not designed to provide meteorological extremes, TMY data 

have natural diurnal and seasonal variations and represent a year of typical climatic conditions 

for a location (Wilcox, et al., 2008). 

  
 
 

TMY3 was selected among the different weather data sources for our study based on 

previous research (Crawley, et al., 1997) which found that TMY data provided closer to the long-

term average than the other available data sets.  In building energy simulations where building 

                                                 
20 (http://www.eia.doe.gov/emeu/cbecs/climate_zones.html) 

http://www.eia.doe.gov/emeu/cbecs/climate_zones.html�
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performance was based on features such as daylighting, large window-to-wall ratios, or poor 

insulation, TMY weather data was most appropriate (Crawley, et al., 1997); therefore, the most 

appropriate for our research.  

The prototypical USAF facility that will be modeled is a two story, 36,000 square foot 

office building and a conceptual 3-D schematic from eQUEST is shown in figure 14.   This 

typical office building will represent the “base case” for our research from which the parametric 

analysis will be developed.  In order to determine a relative performance of individual 

daylighting components such as EC windows, the other building components such as façade 

design and HVAC system remained constant.  This isolated the energy performance of the 

individual daylighting components.    

 
Figure 14. Sample 3-D Schematic of a Facility in eQUEST (Hirsch, 2004). 

 

When specific construction cost data was required, we used construction cost information 

from the 2007 RS Means® Building Construction Cost Data Handbook.  This cost handbook uses 

statistical average of construction material cost collected over 60 years and is considered one of 

the standard references for the construction industry (Fuller, et al., 1996) and in USAF Civil 
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Engineering projects.  Once all the major input data are available, the building can be modeled 

and energy performance simulated.   

 
Step 3: Simulate with eQUEST (DOE-2) 
 

Building energy simulation plays a bigger role not only in building design, but also in the 

operation, diagnostics, commissioning and evaluation of buildings in the last two decades (Pan, 

et al., 2006). Building energy simulation can help the designers compare various design options 

and lead them to more optimal and energy saving designs. It can also help the managers and 

engineers define the energy saving potentials and evaluate the energy saving effects of energy 

conservation measures (ECMs) (Pan, et al., 2006).  Crawley, et al. (2005) provides a good 

summary of some of the leading simulation programs available today.  Our research used 

eQUEST as the simulation software for building energy performance.  eQUEST is a whole 

building energy modeling software that is built on the DOE-2 “engine” or the computer 

algorithm upon which the software is built and operated.   

DOE-2 is an up-to-date, unbiased, well-documented public-domain computer program or 

building energy analysis. DOE-2 predicts the hourly energy use and energy cost of a building 

given hourly weather information and a description of the building and its HVAC equipment and 

utility rate structure (Birdsall, et al., 1994).  DOE-2 has been used by national labs, universities, 

and industry for hundreds of studies of products and strategies for energy efficiency and electric 

demand limiting (Lee, et al., 2002).   

Additionally, the USAF Energy Program office within the Civil Engineering directorate 

(USAF/A7CAE) has recently certified and approved eQUEST use as official building energy 

simulation software for the USAF.  While validation research of eQUEST is limited, a study 
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conducted by Pan, et al. (2006) concluded that eQUEST simulation, when calibrated with real 

world data can produce very credible results.  A graphical result comparing the eQUEST 

simulation to real world data from the Pan, et al. (2006) study is shown in figure 15.   

 

Figure 15. Comparison of Electrical usages from an eQUEST model vs. 2004 real building electricity use (±10%) 
(Pan, et al., 2006). 

 

Finally, one of the main benefits of eQUEST is its ability to perform parametric analysis; 

which wasn’t part of other comparable energy simulation freeware currently available.  The 

methodology for parametric analysis for our research is discussed in the next section. 

 
Step 4: Parametric Analysis  

Parametric analysis isolates the specific benefit of an individual building component 

incrementally changing an alternative to the base case.  For example, we calculate the energy 

consumption of our base case facility; then add skylights to the facility and then determine the 

new energy consumption with skylights added.  The benefit of the parametric analysis approach 

(e.g., as opposed to evaluating each new measure independently on top of the base case) is that it 

accounts for interaction between measures.  Interaction between measures results when the 

amount of impact (benefit or penalty) of any measure is affected by the presence or absence of 
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another measure (McGee, et al., 2002). For example, the benefit of daylighting control will be 

greatest when evaluated assuming standard efficiency lighting and HVAC systems.  However, 

the same daylighting measure evaluated assuming high efficiency lighting and HVAC systems 

will show significantly (e.g. up to 50%) less benefit since there would be less direct lighting load 

to mitigate and since the reduced heat gain would be removed from the building more efficiently 

(McGee, et al., 2002).  Table 2 shows the details of the different building components that will 

be adjusted through the parametric analysis.   

Table 2. Parametric Analysis Components and Justification. 
Component Parameter Justification 
 
Automated 
Daylighting 
Controls 
(ADC) 

 
OFF (base case) or 
ON (ADC) 

 
Determines the effect of installing only the 
automated daylight systems with existing 
windows.  No other daylighting measures 
are installed. 

 
EC 
Windows 

 
Single Pane with 
non-insulated frame 
(base case) or Sage 
Classic™ 
Electrochromic 
Tempered (Table 3) 
equivalent with 
insulated frame 

 
Using the built in glass library in eQUEST 
that has all the solar properties listed, the 
closest fit for the standard USAF class (base 
case) and the EC window (Sage 
Electrochromic) will be used in the analysis.  
For the Sage Electrochromic glass, we will 
use the Classic™ tempered glass shown in 
Appendix G.   Using window properties that 
match currently available commercial 
product should provide the most realistic 
performance data.  In the eQUEST window 
library, the Double Electrochromic glass 
2845 is the closest equivalent: aluminum 
framed window with center of glass U= 
0.28, SHGC for tinted = 0.12, and Tv 
(visible transmittance) for tinted = 10%. 
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Skylights 

 
OFF (base case) or 
ON (skylights) 
 

 
Determine effect of skylight at different 
climate regions.  This should provide 
comparative performance of windows 
considering climate regions where: (a) 
skylights are used with standard USAF 
windows (b) EC windows with ADC are 
used without skylights, or (c) full 
daylighting system including EC windows 
and ADC are used with skylights. 

Full 
Daylighting 

OFF (base case) or 
ON (all daylighting 
components) 

It activates all of the previous components 
and calculates energy consumption to 
determine the interaction between the 
different daylighting strategies. 

 
 

The energy consumption output from eQUEST parametric analysis should determine the 

relative effectiveness of each daylighting strategy.  It should be reiterated that due to the inability 

to compare with real world facility performance data, the findings cannot be generalized 

prediction of cost savings for all USAF office facilities but confined to a realistic relative 

performance within the bounds of our research.  The details of the LCCA using Monte Carlo 

simulation method will be discussed in the next section. 

 
Part II: LCCA using Monte Carlo Simulation 
 
 The methodology for LCCA that will be used for our research is from the NIST 

Handbook 135.  An electronic copy of the handbook can be obtained from the NIST website21

                                                 
21 

.   

The Monte Carlo LCCA in our research combines methodolgy used for LCCA by Liberman 

(2002) and Enblemsvag (2003).  It excludes Liberman’s (2002) Economic Input-Output Life 

Cycle Assessment (EIOLCA) model and Enblemsvag’s (2003) Activity-Based LCCA; both of 

which focused on quantifying qualitative measures, which is beyond our research scope.   

http://fire.nist.gov/bfrlpubs/build96/PDF/b96121.pdf  

http://fire.nist.gov/bfrlpubs/build96/PDF/b96121.pdf�
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Our methodology focuses on performing the traditional LCCA using the same inputs that would 

be required for BLCC 5, the current deterministic life-cycle cost tool.  Using our model, we 

determined the economic viability of the different daylighting strategies.   

 
Step 1:  Identify Common Economic Parameters 

 
Six common parameters will be identified for our study, which are: study period, base 

date, service date, discount rate, inflation, and operational assumptions.  The study period for an 

LCCA is the time over which the costs and benefits related to a capital investment decision are 

of interest to the investor (Fuller, et al., 1996).  The period used for our study is 20 years.  This is 

an effective strategy considering that the average age for USAF facilities is about 30 years; 

however, the typical lifespan for these buildings is well over 60 years.  If the functional life for a 

daylighting application is 20-30 years, then they could be retrofitted on buildings and still recoup 

enough savings before the end of the facility life.   

The base date is the point in time to which all project-related costs are discounted in an 

LCCA (Fuller, et al., 1996).  For our study, we use the constant dollar convention, which does 

not include inflation.  NIST Handbook 135 states that sunk costs are not to be included in the 

analysis; for example, potential environmental remediation costs that are incurred due to 

renovation of old facilities will not be included in the LCCA.  All calculations use the FEMP 

end-of-year convention for discounting.   

The service date is the date on which the project is expected to be implemented; our study 

uses 2008 as the service date.  This is once again a realistic assumption because installation of 

windows for a prototypical USAF facility should take less than one year because we have 

assumed that there is no environmental remediation or other mission related delays as part of the 
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project.  This may or may not be realistic for each specific situation for an operational USAF 

facility; however, based on discussions with USAF Civil Engineers, we contend that this is an 

accurate representation for the LCCA in our study.  Figure 16 shows two examples of how base 

date, service date and study period are related.   

 
(a) 

 
(b) 

 
Figure 16. Comparison of the Relationship between Study Period, Base Date, and Service Date.  (a) shows a case 

where all three time periods that are coincident (used for our study) but (b) is not (Note: the P/C stands for “planning 
and construction”) (Fuller, et al., 1996).   

 
The discount rate for federal energy projects is determined annually by the DOE (Fuller, 

et al., 1996).  The rate ranges from 3% to 6% but currently this rate is 3%.  As stated previously, 

we use the constant dollar convention discounted with real discount rate of 3%, which does not 

consider inflation.  The NIST Handbook 135 has identified four main discounting factors: single 

present value (SPV) factor, uniform present value (UPV) factor, uniform present value factor 

modified for price escalation (UPV*), and FEMP UPV* factor for use with energy costs, the 

details of these factors are described in Appendix H.  The FEMP UPV* factor is the DOE-

projected real escalation rates by fuel type, rate type, and census region.  It is a forecast factor 

based on a midrange scenario with regard to the performance of the domestic economy and 
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world oil prices over 30 years and is updated annually and is used to calculate net present value 

of energy usage over the study period (Fuller, et al., 1996).   

Finally, we did not include costs incurred due to mission change, facility function change, 

and unique facility upgrades, all of which could drastically alter the energy use profile as these 

are unique circumstances outside the scope of our research.  Next, the cost data and related 

factors that will comprise the unique project input data will be identified and explained. 

 
Step 2: Identify Cost Data and Related Factors 
  

There are three primary cost drivers to be considered for the LCCA: initial investment 

capital cost, annual utility costs, and life-cycle energy cost.  The initial investment costs consist 

of the cost of the daylighting technology and related installation and construction cost.  The cost 

of the EC window units were obtained from the manufacturer, Sage Electrochromic, Inc.  They 

were provided with the design specification for the prototypical USAF facility used in our 

research.  The cost estimate of EC windows with daylighting control system and overriding wall 

switches was $350,683 or $57.98/ft2 (full estimate is available in Appendix I).  Where specific 

cost data weren’t available, 2007 RS Means Construction Cost Data Handbook was used; an 

approved cost reference guide (Fuller, et al., 1996).   

The projected energy consumption and cost must be estimated, which include electricity 

demand load where applicable (Fuller, et al., 1996).  All consumption information was obtained 

from eQUEST simulation results.  Local utility rate effective on the base date of the study was 

used, shown in Table 1.  The electricity demand rate was obtained from the published tariff rate 

available from the respective utility company website; and each company website is referenced 
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in Appendix J.   The peak demand rates were for the industrial facility schedule per AFCESA 

Engineering Technical Letter (ETL) 08-5 (AFCESA/CENF, 2008).   

There are no operations and maintenance costs that are used for any of the daylighting 

system.  Even though there are real concerns by facility managers on use of skylights and the 

potential maintenance costs that could increase, when installed correctly they required negligible 

maintenance cost equivalent to windows and daylighting control systems.   This assumption is 

supported by Pratt (2006) and manufacturer cost estimates.  After identifying all input costs, 

Monte Carlo simulation is performed.  For our model, the initial investment capital cost, utility 

cost, and life-cycle cost which is net present value of energy cost using the UPV* factor, is used 

to create the MCS model. 

 
Step 3: Model the Uncertainty 
 
 Once the input variables have been identified, we must determine which variables are 

uncertain and model the uncertainty to be used by the Monte Carlo simulation.  For our research 

we will use Crystal Ball by Oracle® which uses Microsoft® (MS) Excel platform.  Crystal Ball 

provides a distribution gallery, which is in essence a random number generator (Ragsdale, 2007) 

for different types of discrete and continuous probability distribution, shown in Figure 17.   
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Figure 17. Crystal Ball distribution gallery for assumption distributions for probabilistic modeling (Oracle© Crystal 

Ball, Fusion Edition, 2008) 

 
Typically, a normal distribution is used if (a) there is real word data that can be used to 

derive the distribution or (b) there is a reasonable justification that the behavior of the variable 

will be normal over time (Emblemsvag, 2003).  The triangular distribution is used if a variable is 

suspected of normally distributed behavior but the uncertainty is quite large or if there is 

asymmetric behavior that is predicted and must be managed (Emblemsvag, 2003).  The uniform 

distribution is preferred when there is no preference for an expected value (Emblemsvag, 2003).   

Based on previous validation study (Sullivan, et al. (1998); Torcellini, et al. (2004); 

Hanson, et al. (2006)) of commercial building energy consumption, the uncertainty ranged from 

±20%.  This was based on comparison of simulated energy use with metered energy use.  

However, we were unable to determine if the behavior was normally distributed from the 

validation studies.  Therefore, we used the triangular distribution with these range for our energy 

consumption.  Cost data were obtained directly from the manufacturer or approved cost 

estimation publication such as RS Means Construction Cost Data book.  We applied a lower 

bound of -10% and an upper bound of +30% based on standard USAF Civil Engineering 
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construction project management practices (personal communication with subject matter expert 

at the Civil Engineering and Services School, 2009).   The complete assumption distributions 

used for the inputs is shown in Table 3.  

Table 3. Probability distribution assumption used for MCS LCCA model. 

 
 

After the uncertainty variables are identified with their respective distribution profiles, 

the forecast variables were identified.  The forecast variables are the variables under study 
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(Emblemsvag, 2003).  Our simulation used savings-to-investment ratio (SIR) and simple 

payback (SPB22

Table 4. Financial incentives for solar technology by state (Tri-Service Renewable Energy Committee, 2003). 

) as the forecast variable consistent with the current economic metrics used for 

federal energy project.  Our research also investigated if economic variables beyond SIR and 

SPB such as net savings and adjusted internal rate of return would provide increased insight for 

the life-cycle cost analysis.  Furthermore, simple payback was compared with discounted 

payback to determine if it could make a notable difference in the decision making for project 

approval. The details of these economic metrics are explained fully in Appendix K.   

 
Part III: Policy Intervention Potential 

Based on research by the DOD (Tri-Service Renewable Energy Committee, 2003), there 

are limited economic incentives for daylighting technology.  For example, according to the DOD 

research (Tri-Service Renewable Energy Committee, 2003), North Carolina and Oregon were the 

only two states that provided 23% tax incentive for daylighting technology.  Table 4 shows an 

excerpt from the DOD renewable energy assessment study and a copy of the full table is 

available in Appendix L.  

State Renewable Technology that 
Receives State Incentives 

Percent of Present Worth – Effect of Federal and 
State Incentive on Project Cost 

PV SDHW WALL DAYLT 
AL PV 65% 45% 45% 0% 
AZ PV, SDHW 50% 49% 45% 0% 
GA PV 65% 45% 45% 0% 
HI PV, SDHW 65% 65% 65% 0% 
IL SDHW, WALL, PV 66% 55% 55% 0% 

 
 
 
 

                                                 
22 As previously discussed, DOD Energy Manager’s Handbook requires use of DPB rather than SPB; however, due to real world 
interviews within the civil engineering community, currently the SPB is used and thus we will also focus on SPB in lieu of DPB.  
However, we will discuss and advocate our recommendation for use of DPB in later chapter. 
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Step 1: Identify Policy Parameters 
 

Daylighting technology that demonstrates a potential for energy savings from the 

eQUEST simulation but is not economically viable based on current market was used.  We 

applied current economic incentives available for other passive solar technology; in effect, 

simulating an economic policy intervention.  Specifically, we included an economic incentive 

equivalent to 66% of present worth of the initial investment cost for the selected daylighting 

technology.  Table 4 shows that this was the tax credit available for projects in Illinois. A larger 

incentive for the daylighting technology could be needed to motivate manufacturers and 

construction agents to implement the technology; however, we have limited our simulation to 

what is currently available.  Other non-economic policies may be included; however, we have 

limited our simulation to economic factors.  A detailed policy discussion and recommendations, 

including non-economic policies, are presented in chapter 5 

Step 2: Simulate and Interpret 

 Once the new parameters are included in the model, the Monte Carlo simulation will be 

repeated as described in Part II of this chapter.   

 
Summary 

 This chapter outlined the methodology to (a) calculate the energy consumption of each 

daylighting strategy, (b) determine the cost savings and economic viability of each daylighting 

strategy, and (c) define and determine the impact of policy intervention for daylighting strategy 

that may not be currently viable.  Part II and III of the methodology will also demonstrate the 

robustness of our probabilistic life cycle cost model.  The results and interpretations of our 

research findings are discussed in chapter 4. 
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IV. Results and Analysis 

 
Chapter Overview 
 
 This chapter presents the results from our research; which includes the energy 

performance results from eQUEST™ in Part I.  The life-cycle cost anlaysis (LCCA) results using 

Monte Carlo simulation (MCS) model developed with Oracle© Crystal Ball in Part II.  Finally, 

the policy intervention simulation results based on potential economic incentives in Part III.  The 

analysis in Part II and III uses the Monte Carlo simulation model for the life-cycle cost and 

sensitivity analysis to demonstrate the robustness of probabilistic modeling.  We also present a 

comparison of BLCC 5, a deterministic model, results with results from our Monte Carlo 

simulation.  We used 19 USAF energy projects to further demonstrate the robustness of the 

probabilistic model when compared to the deterministic model. 

 
Part I: Energy Consumption Comparison 
 

Our research compares the relative energy performance of the most likely daylighting 

technology that can be retrofit into existing USAF office facilities.  Specifically, these were (1) 

advanced daylighting control (ADC) systems, (2) skylights, and (3) double-pane electrochromic 

windows.  These energy performances of these different technologies were compared 

independently as well as the energy performance of all these technologies combined in a full 

daylighting strategy. 

 
eQUEST(DOE-2) Results 

Our simulations found that electricity consumption savings was the greatest with full 

daylighting strategy, followed by EC windows, then ADC, and finally skylights.   Despite the 
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slightly better performance of the full daylighting system, we conclude that the bulk of the 

savings is a result of EC window performance.  This ranking was consistent throughout all the 

climate zones (CZ) but the savings were generally higher for warmer climate zones.  Our 

findings support that the energy consumption savings of EC windows is significantly higher than 

using skylight as a daylighting strategy.  Figure 18 shows the relative electricity consumption 

reduction for each daylighting strategy across all the climate zones. 

 
Figure 18. Reduction in annual electricity consumption for all daylighting strategy. 

 
 

Figure 19 shows the relative peak demand load savings for each daylighting strategy 

across all the climate zones.  The annual reduction in electricity peak demand load reflects the 

same ranking as the annual electricity consumption savings.  Again, the trend is consistent for all 

climate zones where EC windows and full daylighting dominate the consumption reduction.  

There was not notable dependence on climate zones for electricity peak demand; but it was 

notable that the relative difference in consumption reduction for peak load demand was more 
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apparent.  This was expected based on our literature reviewed that found EC windows 

consistently provide significant electricity demand load reduction.   

 
Figure 19. Reduction in annual electricity peak demand consumption for all daylighting strategy 

 
Figure 20 shows the result for natural gas consumption reduction.  It shows a different 

trend from the electricity consumption.  It is even more evident here at EC windows have a 

consistent energy savings, even exceeding the full daylighting system in reduction in 

consumption.  For example, the highest natural gas reductions occur in moderate to colder 

climates (CZ 1 – 3); however, the natural gas consumptions appear to be more varied.  This 

could be due to other factors such as utility rate cost or the different climate characteristics of 

each specific location within similar climate zones.  

Skylights are the source of greatest energy loss and they tend to lose more heat energy in 

the cold climates and requiring additional cooling energy to compensate for the heat gain in the 

warm climates.  The eQUEST output for all the parametric runs is available in Appendix M and 

a summary table is available in Appendix N.    
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Figure 20. Reduction in annual natural gas consumption for all daylighting strategy. 
 

Our simulation results indicate that EC windows have the greatest relative electricity 

savings for each climate zones especially favoring the warmer climates (CZ 4 – 5) over the 

colder climates (CZ 1 – 2).  The reverse is true for natural gas with the colder and moderate 

climates showing more energy savings compared to the warm climates.  Moderate climates in 

climate zone 3 showed a varied response.  In extremely cold climates such Minot Air Force Base 

(AFB), the savings potential for EC windows is dramatically reduced.    

Despite these reductions in energy reduction potential, a life-cycle cost analysis must be 

completed to determine if they are economically viable when you factor in other costs such as 

initial investment cost.  The results from this analysis are presented next. 
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Part II: Life-Cycle Cost Analysis 

 Energy mangers in the USAF currently use a LCCA model published by the National 

Institute of Standards and Technology (NIST23) called Building Life Cycle Cost (BLCC24

                                                 
23 Agency of the U.S. Commerce Department’s Technology Administration.  Conducts basic and applied research in the physical 
sciences and engineering, and develops measurement techniques, test methods, standards, and related services  (Fuller, et al., 
1996). 
24 Provides comprehensive economic analysis of proposed building capital investments. BLCC is especially useful for evaluating 
energy and water conservation projects in buildings. Up to 99 alternative designs can be evaluated (Paradis, 2007) 

) 5.  

This tool provides economic output such as net annual savings, savings-to-investment ratio 

(SIR), and simple payback (SPB).  These same metrics were used in our study to compare and 

contrast with additional findings from our research. 

Economic Viability Results 

 The facility energy cost savings can be calculated once the utility rates for each location 

have been included.  Figure 21 shows that utility rates could be playing a larger role in cost 

savings.  For example, CZ 3 has wide variance in cost savings within the climate zone.  

Locations such as Andrews AFB and McGuire AFB have significantly more energy cost savings 

compared to Wright-Patterson AFB.   
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Figure 21. Energy savings cost comparison across all climate regions for all daylighting strategies. 

 
 

Based on the pure cost savings presented thus far, EC window technology has the 

greatest promise for energy savings potential.  Next, the initial investment cost of each 

technology was included; which would determine the economical viability of each daylighting 

technology.  We used the savings-to-investment ratio (SIR) and payback.  For SIR, a project was 

economically viable with a value of 1.25 or greater.  For payback, the project was competitive 

for private funding if the simple payback was less than 10 years.   

Our results show that the only economically viable daylighting strategy in the current 

market is the advanced daylighting control (ADC) system, shown in figure 22.  This is due to the 

significantly lower investment cost of ADCs when compared to emerging technology such as EC 

windows.  Skylights have competitive initial investment costs but the energy savings aren’t as 

significant or in certain situations there were no energy savings.  In general, ADCs outperform 

skylights in our facility model but saved less energy than EC windows; however, because the 
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initial investment capital required for ADC are much less than EC windows, ADCs were the only 

technology economically viable based on our simulation.  

 

 
Figure 22. Savings to investment ratio (SIR) across all climate region for all daylighting strategy. 

 
 Our results indicate that the trend for the savings tends to occur more in certain moderate 

climates and temperate climates.  This trend is also supported when using SPB as the metric to 

compare which projects would be viable for private funding.  Again, both EC windows and full 

daylighting have unacceptable payback period, especially for the cold climate zones, shown in 

figure 23.  Note that skylights show a ‘zero’ payback in figure 23; however, this is due to their 

negative payback periods which were trumped to zero.  This means that skylights were the least 

economically viable strategy for private funding based on simple payback.  This should not be 
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confused with a true zero payback that would indicate that it has no payback period, indicating 

most economical.   

 

 
Figure 23. Comparison of simple payback across all climate zones and for all daylighting strategy. 

 
 
 We conclude that within the boundaries of our research parameters, the current market 

does not allow EC windows to be implemented for USAF office facilities due to their prohibitive 

investment costs but ADCs could be viable in most locations regardless of climate.   

Next, we investigate if policy intervention could help make non-viable projects, such as 

EC windows, viable.  The energy savings potential of EC windows is apparent from our energy 

performance simulation results but they are limited by the investment cost.  Therefore, we 
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present an economic policy scenario that is currently available for other passive solar technology 

and apply it to EC windows.   The results are presented and discussed in the next section.   

 
Part III: Economic Policy Intervention for EC Windows 

 Two assumptions were made to demonstrate the relationship between policy intervention 

and its effect on the economic viability of EC windows.  First, we assumed a technology 

implementation policy that could increase the energy savings performance of EC windows by 

33%.  This is possible based on research (Lee, et al., 2007) that has shown that use of reflective 

interior/exterior shades and devices such as light shelves can significantly enhance EC window 

performance.  Furthermore, if building component upgrades are managed effectively they can 

incorporate EC window technology to further enhance energy savings.  For example, when a 

scheduled heating, ventilating and air conditioning (HVAC) system upgrade is planned, 

including EC windows as part of the upgrade could yield cost savings by reducing the size of the 

HVAC system that would be installed.  This is because EC windows would reduce the heating 

and cooling load for the facility therefore reducing the size of the HVAC system required.  And 

because the HVAC replacement is a must, adding the EC window results in a net cost savings 

realized by the savings from the reduced HVAC system.   

Second, we assume a 66% economic cost reduction in the initial investment cost of the 

EC windows.  This is based on the current economic incentives available for other passive solar 

technology such as solar walls are applied to EC windows.  These economic incentives or 

subsidies are available at the federal and state level and the size vary by state.  This was 

discussed in chapter 2.  Furthermore, the current EC window manufacturer estimates that “At 

maturity, EC window costs will be $6-8/ft2 -glass for an IGU and primary controls will be $15 
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per window” (Lee, et al., 2002a); which is within the range of our 66% cost estimate, which 

supports our assumption.   

 The scope of the project has been set around $3 million25

Our policy intervention model used the same probability distribution assumptions 

discussed in chapter 3 and including the assumptions specified in the previous section.   Figure 

24 shows the results of the SIR and SPB values for EC windows at all climate zones with the 

respective probability that the values would meet the minimum values.   Our policy intervention 

results show that in warm climate locations (CZ 4 – 5) EC windows could be economically 

viable.  Locations such as McGuire, Andrews, Davis-Monthan Air Force Base that are in climate 

zone 3 are also economically viable.  The economically viable locations show an approximately 

70% or greater probability of meeting both economic requirements.  Using a generic project 

management risk probability model in Table 5 (Shepherd, 2003), this could inform a decision 

maker that economical policy could have an acceptable level of risk. 

 

 based on USAF energy projects 

submitted in 2008, which range from $750,000 to $3.5 million.  We will also demonstrate the 

robustness of our probabilistic life-cycle cost analysis model as our results are presented in this 

section.    

 
Policy Intervention Results 
 

                                                 
25 This is because any project above $5 million must obtain approval from the Secretary of the Air Force (SAF/IEI) and projects 
that cost more than $7.5 million must obtain congressional approval (AFI 32-1032, 2003). 
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Figure 24. Probability of SIR and SPB for EC windows across all climate zones 

 

Table 5. Risk Probability Model (Shepherd, 2003) 
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Next we compare simple payback (SPB) with discounted payback (DPB).  The 

discounted payback restricts the economic viability; which means that fewer locations are below 

the 10 year limit.  Using discounted payback, the extreme climate zones on each end, extremely 

cold (CZ 1) or extremely hot (CZ 5), have same trend.  And locations with high utility costs also 

show economic viability, such as Andrews AFB and McGuire AFB.  However, some locations in 

CZ 3 and 4 are not economically viable, such as Beale and Pope AFB, shown in figure 25. 

 

 
Figure 25. SPB summary results for EC windows in all climate zones 

Discounted payback appears to separate from simple payback with increase in time or 

with increase in the interest rate.  Currently, the FEMP discount rate is fixed at 3%; therefore, 

projects that show a payback around the critical 10 year mark could be at jeopardy if discounted 

payback were to be used, for example: Wright-Patterson AFB, Pope AFB, and Beale AFB from 

figure 25. However, as discussed before, discounted payback is required by the DOD Energy 

Manager’s Hanbook and it is a more accurate economic measure because it considers time value 
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of money.  Both types of payback could be beneficial since private funding for federal energy 

projects uses SPB which tends to be more optimistic (shorter); however, use of DPB for publicly 

funded projects could be an appropriate compromise since federal funding could be more 

competitive.  However, our recommendation is that discounted payback should be used instead 

of simple payback.   

We also investigated using other economic metrics such as adjusted internal rate of return 

and net savings.  The detailed results from adjusted internal rate of return and net savings are 

presented in Appendix O.   However, minimal additional insight is provided by either metric; 

therefore, we conclude that SIR and payback are sufficient economic metrics.  Next, we 

demonstrate in detail the type of additional information that could be available from our 

probabilistic model that would not be from BLCC 5.  These could provide decision makers with 

a more complete picture of risk and uncertainty. 

 
Monte Carlo Simulation Robustness 
 

Using Monte Carlo simulation, we have shown briefly in the previous section, the 

probabilities that can be obtained compared to the traditional point estimates.  We show the 

results for Beale Air Force Base (AFB) as a representative sample to demonstrate the additional 

information provided by Monte Carlo simulation using Crystal Ball.   

Figure 26 shows a distribution for the SIR value for EC windows at Beale AFB.  In figure 

26, the deterministic SIR value that was calculated for Beale AFB, 1.46, is plotted on the 

distribution.  In general, all deterministic values tended to be biased optimistically.  This means 

that for SIR, the deterministic values tended to be higher and for payback values, they tended to 

be lower.  This optimistic bias is explained more fully in the last section of this chapter. 
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Figure 26. MCS probability distribution output for the SIR of EC windows at Beale AFB. 

 
  

Another way to convey this information for a decision maker, shown in figure 27, is that 

when looking at the minimum required SIR value for Beale AFB, there is only about 45% 

chance that the SIR value would be less than 1.25.  In other words, there is 55% chance that the 

SIR could be above 1.25.  Though this is not a guarantee, it does provide a decision maker with a 

statistical supported probability rather than a point estimate of SIR = 1.46, which has relatively 

less utility.  Appendix P shows another detailed example demonstrating model robustness by 

allowing the decision maker to obtain probability of an event such as obtaining the minimum 

required annual energy savings for a project. 

 
Figure 27. MCS cumulutive distribution for the SIR of EC windows at Beale AFB. 
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When compared to BLCC 5 and its point estimates, the probabilistic model’s robustness 

becomes self-evident.  Monte Carlo simulation is ideal when historical information is available 

but can also use empirical data or expert estimates to account for uncertainty and risk.  

Uncertainty analysis is required as part of any economic analysis for USAF energy 

projects (AFMAN 65-506, 2004).  Crystal Ball incorporates uncertainty analysis within the 

simulation by providing a sensitivity chart with each distribution output.  Sensitivity analysis 

results are discussed in the next section. 

 
Sensitivity Analysis 
  
 Our sensitivity analysis showed that utility costs tended to be most influential for 

economic viability.  The exception is that in colder climates, CZ 1-2 and various locations in CZ 

3, the construction cost was most significant.  One general trend was that higher electricity 

consumption rates were more prevalent and therefore were significant more often.  Natural gas 

had the next significant influence and peak demand was the last in utility cost influences.  We 

reiterate that probability sensitivity analysis is able to relate loose correlations in a complex 

system that would otherwise be undetectable through traditional deterministic analysis 

(Emblemsvag, 2003) so the true reason for the significance could be different than what we have 

noted here.   Furthermore, locations with high utility rates tended to show a greater economic 

savings compared with effects from climate.  

Figure 28 shows the SIR sensitivity analysis for EC windows at Beale AFB.  The chart 

shows that the greatest contributing factor for SIR is the initial investment cost; therefore, the 

larger the initial investment cost the lower the SIR.  The second most influential factor is the 

electricity consumption life cycle cost using the EC windows; therefore, the lower the electricity 
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consumption cost the higher the SIR.  And the third most influential factor is the current 

electrical consumption life cycle cost; therefore, the higher the current consumption the higher 

the SIR.  The fourth and fifth factors contribute equally as the least influential for SIR, which 

relate to natural gas consumption.   

  
Figure 28. Sensitivity analysis by rank correlation for EC window SIR at Beale AFB. 

  
Figure 29 effectively highlights the impact of utility cost.  Figure 29 shows results for 

McGuire AFB which is in the same climate zone as Beale AFB (CZ 3) but has a significantly 

larger utility rate, especially electricity rates. McGuire AFB’s electricity rate is $115.67/kWh, 

whereas Beale AFB’s electricity rate is $63.27/kWh.  Our results show that McGuire AFB 

results are consistent with temperate climate zones (CZ4 – 5) in terms of economic viability, 

which means that electricity life-cycle cost of electricity consumption is the most significant 

factor rather than the initial investment cost of EC windows.   
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Figure 29. Sensitivity analysis by rank correlation for EC window SIR at McGuire AFB (CZ 3). 

Overall, we conclude that within our research boundaries, the electricity consumption 

cost and the initial investment costs have the greatest impact on the economic viability of EC 

windows for warmer climates and locations that have high utility rates.  Furthermore, economic 

incentives such as federal and state tax credits could make emerging daylighting technology such 

as EC windows economically viable.  The Monte Carlo output with sensitivity analysis for all 

climate zones is available in Appendix Q.  

The last section of this chapter demonstrates more fully how deterministic values tend to 

be optimistically biased when compared with probabilistic values from our research results.  This 

could have an adverse effect for the decision maker if the project data are inaccurately portraying 

the economic viability of the project.  We compare BLCC 5 project data from 19 USAF energy 

projects that were submitted in 2008.  The findings are discussed in the next section.  
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Deterministic (BLCC 5) vs. Probabilistic (MCS)  
 
 We obtained 19 energy project data that were submitted as part of the 2008 USAF 

Energy Conservation Investment Program (ECIP).  Project inputs were generally limited to basic 

cost data: electricity savings, natural gas savings, water savings, and non-energy savings.  Non-

annually occurring energy savings were converted to annual annuity using 3% (FEMP discount 

rate for energy projects) and the study period specified on the project.   If the BLCC summary 

sheet was available, the data from it was used including any other relevant discount factors.   

 First, we plotted the deterministic SIR values on the probability distribution obtained for 

that project.  The standard deviation lines were drawn to determine where the deterministic value 

fell within the distribution.  This was completed for each project for SIR and SPB values.  The 

output for all projects is available in Appendix R and the summary tables for the projects are 

available in Appendix S. 

 
Figure 30. Example of one of the projects used to compare BLCC 5 and MCS model by plotting deterministic value 

on the probability distribution for SIR. 
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Next, all the deterministic values were obtained and plotted on a standard normal graph, 

shown in figure 31, and grouped by which standard deviation it fell into.  The implication of this 

could be that some of the current economic values being provided by BLCC 5 are overly 

optimistic, especially if they fall three standard deviations away, and therefore could be 

providing inaccurate economic predictions.   

 
Figure 31. Relative location of deterministic SIR values for each project grouped by standard deviation 

 

Again, we reiterate that our probabilistic model or any probabilistic model may not 

provide a more accurate prediction; however, it does provide more information and is a more 

robust analysis tool when compared with the current deterministic tool.  Validating our 

probabilistic model could further justify the use of probabilistic models. 

 
Summary 
 
 We presented our findings from (a) energy performance simulation of different 

daylighting strategy, (b) economic viability of different daylighting strategy in the currnet 

market, and (c) economic viability of EC windows with economic incentives as a policy 

intervention.  Furthermore, we demonstrated the robustness of probabilistic model using Monte 
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Carlo simulation.  Despite the limitation of real world data and our findings confined to the 

boundaries established for our study, our results are consistent with findings from other 

researchers (Lee, et al (2004); Lee, et al. (2006); Apte, et al. (2008)) in the energy performance 

of the different daylighting strategies.  Our research also extends previous research on 

daylighting technology for DOD facilities.  Chapter 5 will summarize our research results and 

provide our final recommendations. 
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V. Conclusion and Recommendations 
 
 
Chapter Overview 
 
 This chapter provides final conclusions and recommendations from our research.  First, a 

brief research summary is presented including the research questions from chapter 1.  Second, 

we discuss policy recommendations.  Finally, the benefit and limitations of our research, and 

suggestions for future research are discussed. 

 
Research Summary 
 
 Our research analyzed the potential energy performance of different daylighting 

technologies for United States Air Force (USAF) office facilities using eQUEST (DOE-2) 

simulation tool.  We determined the economic viability of each daylighting strategy and 

determined which would be most economically viable in the current market.  For technologies 

that demonstrated energy savings but were economically viable, we investigated potential 

economic policies currently available for other renewable energy technology that could make 

emerging daylighting technology viable.  Finally, a probabilistic life-cycle cost analysis tool 

using Monte Carlo method from Oracle™ Crystal Ball was used to demonstrate the robustness of 

probabilistic models compared to existing deterministic life-cycle cost analysis (LCCA) tool, 

BLCC 5.  

 
Research Questions Answered 
 

Which daylighting strategy is most energy efficient for a USAF office facility: advanced 

daylighting control system with traditional windows, skylights with traditional windows, EC 



 

89 

 

window system, or full daylighting strategy using EC window systems with skylights? And how 

does climate affect the different daylighting strategies? 

 Our results show that energy efficiency is influenced by climate and the type of 

daylighting technology.  EC windows showed around 20-25% reduction on electricity 

consumption and 20-30% reduction in peak demand and approximately 20% reduction in natural 

gas across all climate zones.  The full daylighting strategy incorporating all the daylighting 

components had the most significant electricity savings, exceeding that of EC windows alone.  

However, the net natural gas energy loss, approximately 5-15% depending on climate region, 

caused by the skylights made the full daylighting strategy only marginally better than the EC 

windows alone.  

In general, warmer climates benefit most from daylighting.  The daylighting strategies 

that incorporate EC windows far exceed the electricity savings of any traditional daylighting 

strategy, such as skylights and ADCs.  For natural gas savings, the general trend is that 

daylighting savings are greater for colder climates; presumably because there is greater natural 

gas usage in those climate zones.  In extreme cold climates, EC windows performed poorly in 

our simulation.  However, in moderate climate such as climate zone 3, energy savings and costs 

varied within the climate zone and showed that there were other factors that were more 

influential than climate, such as utility cost. 

 
Which daylighting strategy is most economically viable for a USAF office facility? 

 The only strategy that is currently viable based on our model results is advanced 

daylighting controls (ADC).  Without any economic incentives, ADC is the only technology that 

provides an acceptable return on investment.  Skylights are most economical in terms of initial 
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investment; however, due to their energy performance in our simulation, skylights are not 

recommended for USAF office buildings.  In general, skylights provide some electricity savings 

but are significant source of energy loss for natural gas, especially in cold climate zones.  The 

two daylighting strategies that incorporate EC windows are not economically viable currently 

due to the prohibitive cost of EC windows.  The relative energy savings of EC windows are 

considerable in our simulation the energy savings is insufficient to overcome the initial 

investment costs to make EC windows economically viable.   

 
Which input cost factor affects the economic viability of emerging daylighting 

technology: utility rate, peak demand cost, or initial investment cost?  

 The most influential economic factors were determined to be utility rates followed by 

initial investment cost.  Specifically, electricity rates were most significant; which was most 

evident when climate zone 3 was analyzed.  Climate zone 3 showed the most varied response to 

economic viability; however, the Monte Carlo simulation sensitivity analysis found that 

electricity rates had most significant influence for warmer climate zones and locations with high 

electricity rates.  In colder climates, the most significant factor was the initial investment cost. 

This is most likely because the electrical rates weren’t as high in the colder climates and 

consumption was lower.  Therefore, we conclude that the most significant input cost factor is the 

electricity consumption rate. 

 
Is there significant difference in using discounted payback versus simple payback that 

could affect decision making? Do other economic factors provide additional insight? 

Other economic metrics such as net savings and adjusted internal rate of return do not 

add further insight to current economic analysis using SIR and payback from our analysis.  Our 
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results show that, in general, simple paybacks are more optimistic when compared to discounted 

payback.  The gap between the two paybacks increase with time and especially as it nears the 10 

year mark.  SPB could continue to be used if projects are vying for private funding.  However, 

discounted payback could provide more realistic metric for all projects.  Additionally, if the 

FEMP discount rate were to be increased, the payback gap between simple and discounted 

payback would also increase.  Using discounted payback with increased minimum payback time 

of 15 years could be more realistic for renewable energy projects and is recommended from our 

research results, and is also supported by previous DOD study (Tri-Service Renewable Energy 

Committee, 2003).   

 
What are the capabilities that make the Monte Carlo life-cycle cost analysis model more robust 

than the deterministic model BLCC 5?  What type of insight can the added robustness provide 

for the USAF decision maker? 

 Our results demonstrated that our MCS LCCA model is more robust than the current 

deterministic model, BLCC 5.  By using probability distributions and cumulative distributions 

along with the respective sensitivity analysis, information beyond a point estimate can be 

provided to the decision maker.  A range of possible values derived from statistical probability 

provides more than a simple number.  In general, deterministic values tend to be more 

optimistically biased.  This means that deterministic SIR values tend to be higher in value and 

SPB tend to be lower in value when plotted on a probability distribution.  In some of our results, 

the difference between the probabilistic values and deterministic values showed that a possible 

‘go/no-go’ situation could be affected depending on the type of SIR and payback used. 
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What are some policy implementation that could aid the implementation and 

proliferation of emerging renewable energy technology? 

 The results of our economic policy intervention case study showed that implementing 

economic incentives currently available for other passive solar technology such as solar walls 

applied to daylighting could make EC windows economically viable for USAF facilities, but 

primarily in warmer climates and locations with high utility rates.  Without policy intervention 

economic viability may never be possible due to the high investment cost inherent in emerging 

renewable technology.  This is not a new phenomenon but has historical context.  The significant 

influence of policy is discussed further in the next section. 

 
Policy Recommendation 
 

Economic incentives offered by states and the federal government have been and 

continue to be a single most significant driver of renewable energy technology (EIA, 2005).  Use 

of economic incentives to improve technology and increase market proliferation has historical 

context in wind technology.  Figure 32 shows the relationship between the installed wind 

capacity responses to economic incentives for the state of California.  The installed wind 

capacity represents the proliferation of wind turbines and the eventual decrease in cost of 

technology and increase in its efficiency.  For example, towards end of 1990’s and early 2000’s, 

the production tax credit (PTC) is linked with sharp increases in wind capacity.  Each time a tax 

credit expired, the wind capacity leveled and with each new implementation (three in total), it 

was followed by a sharp increase in the installed wind capacity.  This clearly demonstrates 

industry response to government subsidies for renewable technology. 
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Figure 32. Historical relationship of economic incentive with respect to wind technology growth (EIA, 2005). 

 
 

Government subsidies are also prevalent, and often more aggressive in European 

countries; large economic incentives have allowed greater acceptance and implementation of 

emerging technologies such as EC windows in Europe (Lee, et al., 2002).  For facility retrofit 

cases, the window and daylighting strategy could be the single major factor for energy savings 

(Ruck, et al., 2000).   

EC windows are an attractive solution for future energy savings strategy because their 

most notable characteristic is the ability to reduce peak electricity demand load (Lee, et al 

(2004); Lee, et al (2006)).  This is important because peak demand is one of the reasons for 

driving up electricity cost and causing rolling blackouts throughout the country where demand is 

far exceeding the capability to supply electricity.  A Rand Corporation (1980) study on the 

impact of demand load showed that if a reduction in peak demand can be accomplished, it could 
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reduce aggregate generating and transmission capacity needed and the operating cost per 

kilowatt-hour would be reduced. This would, in turn, reduce the electricity rate to the customer 

(Acton, et al., 1980); which our research showed is the most significant factor for economic 

viability.  More recently, a Brattle Group study (Faruqui, et al., 2007) found that peak demand 

could be reduced by 11% using technology currently on the market.  This is significant because 

at the national level even a 5% reduction in peak demand load could reduce energy savings that 

would equate to $3 billion annually or $35 billion over the next 20 years (Faruqui, et al., 2007).  

Our simulations show a peak demand reduction of approximately 20-30% using EC windows, 

consistent with previous findings (Lee, et al., 2002a).  This could be significant energy savings if 

multiplied at the aggregate level.   

Non-economic policy such as implementation strategy of renewable technology should 

also be considered.  The DOD has mandated that electricity, natural gas, and water be metered 

on appropriate facilities.  Installing facility meters should be managed to consider facility age, 

size, and type in addition to the climate zone.  Strategically managing metering installation is 

critical to building a reliable energy usage baseline and providing the necessary information to 

validate energy prediction models and simulation effectively for USAF facilities.  Additionally, 

peak demand rate should be metered, monitored, and tracked because it could have a larger 

impact on energy cost and is not explicitly part of the new metering mandate.   

 Based on the results from our policy intervention case study, we recommend economic 

incentives that are more aggressive than the incentives available for existing solar technology.  If 

incentives allow implementation of emerging technology, installation should be staggered over 

time so that the benefit of improved technology and cost reduction can be realized as the 

technology matures.  The benefits of our research are discussed next. 
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Research Benefits 
 
 Our research provides insight into the relative energy performance of current daylighting 

technology for USAF facilities.  Our research fills a gap in daylighting studies in the DOD, 

currently limited to large warehouse-type facilities and primarily using traditional strategy such 

as skylights only.  We demonstrate that EC windows could help meet the new federal facility 

energy mandates if economic incentives currently available for other passive solar technologies 

could be extended to daylighting technologies.  In general, the information from our research 

could provide decision makers on how to implement different daylighting technology within the 

USAF.  

We used a Monte Carlo simulation life-cycle cost analysis model to demonstrate that it 

can be used for energy projects with results that are more robust and with additional information 

not available using the current deterministic model, BLCC 5.   

Finally, our results show that discounted payback could be a better indicator and should 

be used with or in place of simple payback; if not for all projects, at least for projects that are 

competing for federal funds.  If discounted payback is used, the baseline for acceptance currently 

set for 10 years should be extended to 15 years.  Considering that the life expectancy of many 

modern building systems, such as EC windows, is between 20-30 years (based on personal 

communication with Sage Electrochromic, Inc., 2009) significant energy savings could be gained 

after the initial payback period of 15 years.  Despite these demonstrated benefits, our research 

has limitations that need to be discussed and are presented in the next section. 
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Research Limitations 
 

A significant limitation of our study is the lack of validation.  Both eQUEST and Monte 

Carlo simulation are validated tools; however, they have not been validated by our study of for 

modeling USAF facilities economic analysis comparing its effectiveness against BLCC 5 results.   

Due to the wide variety of different office building design and size which could alter the 

building energy performance, our results should not be applied generally for all USAF office 

facilities.  Additionally, electricity demand rates were obtained from tariff rates published on the 

website for the respective utility company.  A more accurate cost rate and consumption data of 

USAF facilities should provide better results.  Ultimately, our findings are limited to the 

boundaries and scope established for our research.  We also suggest future researches that could 

help further the our findings, which are presented next. 

 
Suggestions for Future Research  

 
Future research should focus on validating our models when metered facility energy 

usage can be made available.  Validation study of energy consumption to compare eQUEST 

models with metered data of USAF facilities should be conducted.  It should include modeling 

facilities by size, type, and age to capture a larger energy profile using other prototypical USAF 

facility design. 

Additionally, our MCS model should be validated by conducting a probabilistic life-cycle 

cost analysis for federal energy projects.  Specifically, Crystal Ball could be tested with USAF 

Civil Engineering projects.  Finally, EnergyPlus should be explored for implementation for 

USAF Civil Engineering as the future energy simulation software.  Currently, EnergyPlus does 

not have parametric capability, therefore was not used for our research.  However, EnergyPlus is 
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the latest Department of Energy (DOE) approved software that combines the DOE-2 engine 

(same as in eQUEST) with Building Loads Analysis and System Thermodynamics (BLAST26

Currently only the advanced daylighting control systems are economically viable but 

electrochromic windows should not be ignored despite the fact that they are not currently 

economical for the USAF.  EC windows have demonstrated significant energy savings towards 

meeting the federal facility energy goals and are promised to be the next major innovation in 

building technology according to leading national research laboratories.  Future studies to 

quantify environmental impacts; thermal and visual comfort; privacy; aesthetics; and design, 

) 

and incorporates a superior daylighting algorithm for building energy simulation.  Finally, DOE 

has conducted recent validation studies for the software; and EnergyPlus results are eligible for 

federal and state tax credits (DOE, 2008a) whereas eQUEST results are only eligible for state tax 

credits. 

 
Conclusion 
 

Our research goal was to (a) identify the potential energy consumption savings of 

different daylighting strategy for USAF office facilities, (b) determine which strategies were 

economic viable in the current market, and (c) investigate potential economic policies to make 

viable emerging technologies that are currently not viable due to cost.  Furthermore, we 

demonstrated the robustness of probabilistic life-cycle cost analysis model using Monte Carlo 

simulation compared to deterministic results from BLCC 5.  Despite the limitation to our 

research, our results justify, at minimum, a need for future validation studies of our and other 

models that could impact the growing energy conservation strategy in DOD.   

                                                 
26 A comprehensive set of programs for predicting energy consumption and energy system performance and cost in buildings.  
Developed by the U.S. Army Construction Engineering Research Laboratory and the University of Illinois  (Crawley, et al., 
2005). 
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maintenance, and operation costs could increase the viability of EC windows as well (Lee, et al., 

2000).   

Designer, engineers and policy makers in the USAF need a fundamental change in the 

perception of renewable energy technology for facilities with respect to the new federal energy 

goals; because the new goals focus on load avoidance rather than cheaper energy generation 

strategy, which means that the focus is in reducing demand and consumption of energy rather 

than simply reducing the cost of energy.   Our facility and economic models, if validated, could 

provide a basis for a future tool that could be readily tested and implemented for USAF energy 

projects. 
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Appendix A 

Mandate Title Website URL (DOE, 2008b) 
EPACT 2005 http://frwebgate.access.gpo.gov/cgi-

bin/getdoc.cgi?dbname=109_cong_bills&docid=f:h6enr.txt.pdf 
EO 13423 http://www.ofee.gov/eo/EO_13423.pdf 
EISA 2007 http://frwebgate.access.gpo.gov/cgi-

bin/getdoc.cgi?dbname=110_cong_bills&docid=f:h6enr.txt.pdf 
 

Energy Policy Act of 2005 (Rocchetti, 2008): 

• Reduce energy intensity (MBTUs27

• Electric metering required in all qualifying buildings by 2012 

 per Sq Ft) 2% per year from Fiscal Year (FY) 06-
15 using FY03 as baseline 

• Energy Star™ products required (electrical motors, Air Conditioners, refrigerators, 
etc.) 

• Buildings must be designed 30% better than American Society of Heating, 
Refrigerating, and Air Conditioning Engineers (ASHRAE) standard 90.128

 
Executive Order 13423 (Rocchetti, 2008): 

 

requirements 

• Reduce energy intensity (MBTUs per Sq Ft) 3% per year from FY06-15 using FY03 as 
baseline. 

• Reduce water intensity by 2% annually from FY08-15 using FY07 baseline. 
• Comply with Federal Leadership in High Performance and Sustainable Buildings 

Memorandum of Understanding 
o Employ Integrated Design Principles 
o Optimize Energy Performance 
o Protect and Conserve Water 

                                                 
27 A unit of energy used in the power, steam generation, heating and air conditioning industries.  "BTU" is used to describe the 
heat value (energy content) of fuels, and also to describe the power of heating and cooling systems, such as furnaces, stoves, 
barbecue grills, and air conditioners. The unit MBTU was defined as one thousand BTU presumably from the Roman numeral 
system where "M" stands for one thousand (1,000). This is easily confused with the SI mega (M) prefix, which adds a factor of 
one million (1,000,000). To avoid confusion many companies and engineers use MMBTU to represent one million BTU; 
alternatively a “therm” is used representing 100,000 or 105 BTU, and a quad as 1015 BTU.  
(Source: http://en.wikipedia.org/wiki/British_Thermal_Units) 
28 A set of national requirements for the energy efficient design of commercial buildings.  The purpose of this standard 
is to provide minimum requirements for the energy-efficient design of buildings except low-rise residential buildings. 
(Source: http://www.energycodes.gov/training/pdfs/ashrae_90_1_2004.pdf)  

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=109_cong_bills&docid=f:h6enr.txt.pdf�
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=109_cong_bills&docid=f:h6enr.txt.pdf�
http://www.ofee.gov/eo/EO_13423.pdf�
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_bills&docid=f:h6enr.txt.pdf�
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_bills&docid=f:h6enr.txt.pdf�
http://en.wikipedia.org/wiki/Energy�
http://en.wikipedia.org/wiki/Energy�
http://en.wikipedia.org/wiki/Power_%28physics%29�
http://en.wikipedia.org/wiki/SI�
http://en.wikipedia.org/wiki/Mega-�
http://en.wikipedia.org/wiki/Therm�
http://en.wikipedia.org/wiki/Quad_%28energy%29�
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o Enhance Indoor Environmental Quality 
o Reduce Environmental Impact of Materials 

Energy Independence and Security Act of 2007 (Rocchetti, 2008): 

• Reduce fossil fuel energy for all new and renovated construction, compared to similar 
building’s use in 2003. 

o 55% reduction by 2010  
o 65% reduction by 2015  
o 80% reduction by 2020  
o 90% reduction by 2025 
o 100% reduction by 2030 

• Solar Domestic Hot Water (DHW) Heating: 30% of DHW must be solar - where cost 
effective 

• Energy Savings Performance Contracts (ESPC): Agencies can mix appropriated with 
private financing on project 

• Energy Audits required for each bldg once every four years 
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Appendix B 

An EC coating is typically five layers, about one micron thick, and is deposited on a glass 
substrate. The electrochromic stack consists of thin metallic coatings of nickel or tungsten oxide 
sandwiched between two transparent electrical conductors. When a voltage is applied between 
the transparent electrical conductors, a distributed electrical field is set up. This field moves 
various coloration ions (most commonly lithium or hydrogen) reversibly between the ion storage 
film through the ion conductor (electrolyte) and into the electrochromic film.  The effect is that 
the glazing switches between a clear and transparent prussian blue-tinted state with no 
degradation in view, similar in appearance to photochromic sunglasses. The main advantages of 
EC windows is that they typically only require low-voltage power (0–10 volts DC), remain 
transparent across its switching range, and can be modulated to any intermediate state between 
clear and fully colored.  For some EC types (polymer laminate), the device is switched to its 
desired state and then no power is needed to maintain this desired state. This type of device has a 
long memory once switched (power is not required for three to five days to maintain a given 
switched state) (Carmody, et al., 2004). 

 

Figure B-1. Detailed Cross Section of Sage® Electrochromic Window with Clear (A) and Shaded (B) states (Sage 
Electrochromic, 2006a) 

 

In terms of durability, various types of EC windows have also been shown through 
independent tests to be extremely durable under hot and cold conditions and under intense sun 
(Carmody, et al., 2004). These devices have been cycled (from clear to colored and then back 
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again) numerous times under realistic conditions so that one can expect long-term sustained 
performance over the typical 20–30 year life of the installation. Typical operating temperatures 
are between –20 and 190 degrees Fahrenheit (Carmody, et al., 2004).  Additionally, other 
durability testing to assure product reliability has been conducted throughout the materials and 
technology development processes.  Samples of the glass have been tested by several accredited 
third-party organizations, including the DOE.  In a series of tests, which were carried out for 
more than 10 years, the EC glass was subjected to simulated solar light and heat while being 
continuously switched between the clear and tinted states.  The units successfully completed all 
tests, and even surpassed the requirements for the ASTM29

                                                 
29 Now called ASTM International, is one of the largest voluntary standards development organizations in the world-a trusted 
source for technical standards for materials, products, systems, and services. Known for their high technical quality and market 
relevancy, ASTM International standards have an important role in the information infrastructure that guides design, 
manufacturing and trade in the global economy.  (Source: http://www.astm.org/ABOUT/aboutASTM.html) 

 Test Standard E-2141-02, which 
evaluates "the combined degradative effects of elevated temperature, solar radiation and 
extended electrical cycling through 50,000 cycles…” (Sbar, 2007).  The dynamic windows 
continued switching through 100,000 cycles (clear/tint /clear), which is double the test standard 
and "equivalent to switching a window nine times per day for 365 days per year across a 30-year 
lifetime" (Sbar, 2007).  The units successfully completed a 24-month test in the Arizona desert 
and 36 months in a Minnesota test site, as well as numerous evaluations carried out by leading 
companies in the glass industry (Sbar, 2007). 

By some estimates these “smart windows” (which categorizes dynamic window systems 
such as EC windows) could reduce peak electric loads by 20-30% in many commercial buildings 
and increase daylighting benefits throughout the U.S., as well as improve comfort and potentially 
enhance productivity in our homes and offices (Lee, et al., 2002).  Compared to an efficient low-
e window with the same daylighting control system, the EC window showed annual peak cooling 
load reductions from control of solar heat gains of 19–26% and lighting energy use savings of 
48–67% when controlled for visual comfort (Lee, et al., 2006).   

The Lawrence Berkeley National Laboratory (LBNL) conducted numerous commercial 
building energy simulation studies in the mid-1990s, concluding that significant annual total 
energy savings can be obtained compared to spectrally selective low-emittance (low-e) windows 
in moderate to hot climates if large-area EC windows are controlled to maintain the interior 
illuminance set point level and are combined with daylighting controls (Lee, et al., 2004).  In the 
northern European Union (EU) where commercial buildings are often heating-dominated and 
passive cooling is encouraged, researchers have investigated alternate strategies with and without 
daylighting controls where the EC is switched to provide passive heating during the winter and 
to reduce cooling requirements and overheating during the summer (Lee, et al., 2004).   
Recently, LBNL conducted a full-scale test in an urban office (Lee, et al., 2000), figure 10, and 
an experimental field study at the LBNL test site (Lee, et al., 2006), figure 11. 
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Figure B-2. Interior view of test room on a partly cloudy day. The EC windows are in the clear state at 10:30 under 

diffuse light conditions (left). When sun enters the window, the EC switches to its fully colored state by 10:50 
(right) (Lee, et al., 2000). 

 

 
Figure B-3. LBNL Window Test Bed Facility (upper photo). South elevation of EC facades (lower photo) (Lee, et 

al., 2006). 
 

 By controlling solar heat gains in summer, preventing loss of interior heat in winter, and 
allowing occupants to reduce electric lighting use by making maximum use of daylight, 
spectrally selective glazing significantly reduces building energy consumption and peak demand 
(Lee, et al., 2002).    

 
Non-Economical Value of EC Windows 

Non-cost factors merit discussion because while they may not yet be universally accepted 
as decision making criteria, most if not all of the literature in our review have found them to be 
worthy of consideration for EC windows.  However, due to the qualitative nature of these non-
cost factors, the discussion will be kept to three areas found in our review of existing literature 
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and not an in-depth analysis of merit or decision criteria.  These three areas of interest are: (1) 
potential occupant satisfaction as it relates to acceptance, (2) potential occupant productivity 
increase, and (3) potential environmental benefits. 

In order to determine the occupant comfort, satisfaction, and acceptance, which are 
critical to market success, Lee, et al. (2006) conducted a survey of 43 subjects as part of their 
experimental field study where the subjects were exposed for 40–60 minutes to three different 
EC window-lighting conditions.  Results from the survey (Lee, et al., 2006) confirm the promise 
of EC systems to improve satisfaction and comfort in work spaces.  Occupants found the EC 
window system significantly more desirable than the reference window, where preferences were 
strongly related to perceived reductions in glare, reflections on the computer monitor, and 
window luminance. With the EC systems, subjects chose to face the window to do computer-
related tasks, presumably for view, despite minor complaints of glare and brightness, see figure 
12 and 13. 

 

 
Figure B-4. Occupancy Comfort Study Allowing Users to Adjust Different Window Pane per User Comfort (Sage 

Electrochromic, 2006a). 
 

 
Figure B-5. Interior view of EC Window and the Different Levels of Shading Possible (Lee, et al., 2006). 
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 The EC system has the added advantage over a window blind system of being able to 

provide views out for a larger percentage of the day (Lee, et al., 2006).  The Lee, et al. (2006) 
study stresses that the mere presence of EC windows does not guarantee energy savings or visual 
comfort and freedom from glare. However, the results from their test bed suggest that a 
marketable EC system can be developed that will save energy while maintaining visual comfort. 
The Lee, et al. (2006) study results also reaffirm findings from the field test and DOE-230

Furthermore, the incorporation of the EC glazing in an advanced window could improve 
the thermal insulation and reduce thermal losses during winter, i.e. gas filled double pane low-e 

 
simulations, where visual comfort criteria were satisfied indirectly. In addition, the percentage 
per year that the occupant has a view out is significantly greater: 98% for the EC case versus 
38% for the reference case. These simulation data suggest that EC windows can lead to greater 
occupant satisfaction and perhaps increased productivity and a more healthful environment (Lee, 
et al., 2006).  Many research literatures such as Lee, et al. (2006), Carmody, et al. (2004), and 
Ruck, et al. (2000), for example, conclude that view has important but not yet quantifiable value.  
This value could be converted to productivity dollars in the future but we were unable to find any 
in current literature except a Boyce, et al. (2003) study that found that if an occupant has a view 
out, stress and eye fatigue can be reduced (Lee, et al., 2006); but no related quantitative cost was 
claimed.   

A limited research on human performance related to daylighting was found but only 
related to student performance.  The Nicklas, et al. (1996) study on middle school students stated 
that students who attended daylit schools outperformed the students who were attending 
nondaylit schools by 5 to 14%.  During their (Nicklas, et al., 1996) study, the results of 
performance that spanned multiple years also yielded greater impact for improved performance 
of students in daylit schools.  Their study also noted that one new, non-daylit middle school 
actually showed a negative impact on the students' performance (Nicklas, et al., 1996).  We don’t 
consider the outcomes of the performance of middle school student as indicators for office 
workers, but it is interesting to note the potential of daylighting technology on human 
performance.  It points out, above all else, that further research is needed on the daylight to 
productivity relationship. 

Environmentally, a 10% reduction in US electricity use would cut annual carbon dioxide 
emissions by over 200 million tons, sulfur dioxide emissions by 1.7 million tons, and nitrogen 
oxide emissions by 900 thousand tons (ODUSD, 2005).  From the perspective of environmental 
conservation, it has been estimated that in the U.S., with the adoption of the ‘green seal’ 
environmental standards for windows, 350 million barrels of oil per year will be saved 
(Syrrakou, et al., 2005).  Additionally, Boyle (1996) found that 40% of the energy consumed 
each year is used in buildings and that electricity consumption in buildings is about 20% of the 
total energy used.  The widespread use of EC windows is estimated to cause a net reduction of 
electricity consumption by 2.4% at the aggregate level. The reduction of GHG is expected to be 
three times this amount (e.g. 7.2%) given that electricity production has an efficiency of about 
30% (Syrrakou, et al., 2005).   

                                                 
30 An energy load and cost simulation software certified by the DOE and considered industry standard.  A detailed 
discussion is available in Chapter 3. 



 

106 

 

glass with EC glazing31

One of the main challenges to EC glazing previously mentioned throughout this section is 
economics of EC windows.  EC windows are still new to the market despite their lengthy 
research history.  Therefore, cost competitiveness could be a significant factor to determine 
implementation. Currently in the U.S., EC windows can be in the range from approximately $50-
$130/sq ft; and the largest group are from about $50-$100/sq ft (Sage Electrochromics, Inc. Vice 
President of Sales and Marketing Personal Communication, 2009)  compared to about $20-
$30/sq ft for a standard insulating glazing (Waier, 2007). 

.  Syrrakou, et al. (2005) estimated that 60% of the thermal losses in 
buildings take place through windows and that 60% of the energy in buildings is used for space 
heating.  A reduction of 46% in the glazing U-value (possible by use of advanced materials), 
could cause a 17% reduction of the energy for heating of buildings, or a 6.8% reduction of the 
net energy consumption. This can be translated to an equal reduction of GHG emissions by 14% 
(Syrrakou, et al., 2005).  The impact of EC windows to climate change at the aggregate level, the 
potential impact to occupant health and productivity, and worker satisfaction while not yet 
quantifiable could be consideration along with economic measures by the USAF decision makers 
to determined the true value of EC windows. 
 
Electrochromic Window Limitations 

One of the technical challenges of EC windows to achieve savings, comfort, and amenity 
is that an accurate intermediate-state EC window controller will be needed (Lee, et al., 2006).  
Integrated EC window-lighting systems, which modulate glass transmittance to manage daylight, 
glare, and cooling load and to dim lights to capture energy savings, must also be developed to 
meet visual comfort requirements while maximizing daylight admission and reducing lighting 
power (Lee, et al., 2006).  Another technical issue highlighted from the Lee, et al. (2006) 
experiment was that in cold climates where the outdoor air temperature is low (<0ºC, <32ºF) and 
incident irradiation levels are also low, EC windows may take as long as 40 minutes, or more, to 
alter its shading state, which could significantly affect occupant satisfaction.  Additionally, a 
manual override switch capability is also required because it increases occupant comfort and 
satisfaction base on a Department of Energy study (Boyce, et al., 2003).  These will add 
additional cost to the window system.   

Decision makers must weigh these benefits and limitations of this new window 
technology. Yet most decision makers are risk averse, especially those in the public sector 
(Kirkwood, 1997), so they often need to be presented with a cost analysis that provides an 
effective level of confidence to support one alternative over another.  However, the current 
method of economic analysis may not be considering risk and uncertainty adequately thereby 
providing an incomplete analysis for the decision makers.  Our research proposes to determine if 
there is evidence of this by comparing the results of our probabilistic economic model with the 
current deterministic one.  Currently, the DOD uses the Federal Energy Management Program 
(FEMP) guidance one conducting economic analysis for all energy projects by using of life-cycle 
cost analysis (LCCA) which includes risk and uncertainty analysis.   
 

                                                 
31 In this window set-up, safe inert gas is filled in between the double panes of glass.  The most commonly used gas is argon, 
which is easily extracted from the atmosphere. Krypton is more effective, particularly in small spaces, but is more costly to 
obtain and use than argon.  When combined with special coatings, gas-filled units can achieve very high insulating values (Deal, 
et al., 1998). 
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APPENDIX C 

Electricity Cost: Consumption vs. Peak Demand  
 

 Electricity is priced on a consumption and demand basis; which means that electricity is 
based on use (consumption, measured in kilowatt-hour (kWh)) and the rate of use (demand, 
measured in kilowatt (kW)) (Holtz, 1990).  Peak demand charges can be found in more than 80% 
of all utility company rate schedules in the United States, and close to 100% of all utilities 
outside the United States (Holtz, 1990).  Ignoring the impact of peak demand on costs would be 
overlooking 74% of the total energy costs of the building.  Costs associated with producing 
electricity can vary from month to month for a utility and are reflected in the cost per kWh of 
electricity purchased.  How the peak demand for a building is determined can vary from one 
utility to another, but, in general, it is based on the largest need for electricity during a billing 
period (Holtz, 1990).  Therefore, peak demand represents the maximum rate of energy use, and 
peak demand costs, in dollars per kW, represent a charge for the largest (peak) rate of energy 
use.  The rate of electrical energy use, in kW, is different than the consumption of electricity, in 
kWh (Holtz, 1990).  

Suppose, for example, two identical buildings both consume 20,000 kWh of electricity in 
a month.  However, building A has a peak demand of 5 kW and building B has a peak demand of 
500 kW. It is clear that the utility servicing both building A and B in the same electrical grid has 
to be able to maintain a power plant that has the capacity to produce 505 kW of electricity to be 
able to meet the needs of the two buildings, regardless of the fact that they are both consuming 
20,000 kWh.  If the utility rate structure is $0.10 per kWh for electricity and $10.00 per kW for 
peak demand, then building A with a 5 kW peak demand has a monthly utility bill of $2,050 and 
building B with a 500 kW peak demand has a utility bill of $7,000.  Although the two buildings 
consume the same quantity of energy (20,000 kWh), their monthly bills are quite different 
(Holtz, 1990).   Therefore, a properly designed passive solar building is one that saves both 
energy use and energy costs.   

Energy conservation is often understood by general consensus as doing more with less, or 
performing the same functions with less energy.  However, this could be a misunderstanding; 
conserving energy may not necessarily reduce energy usage, rather create a system that will 
reduce energy costs.  Saving energy costs without reducing energy use can occur if the peak 
demand for a building can be reduced (Holtz, 1990).  In the previous example with building A 
and B, suppose the demand for building B were reduced from 500 kW to 250 kW. Then the 
energy costs would be reduced from $7,000 to $4,500 even if there is no reduction in energy 
usage (still at 20,000 kWh) (Holtz, 1990).  Decreasing the peak demand but simultaneously 
increasing the consumption of electricity can make it possible to reduce the overall cost of 
energy in a building. Therefore, if building B (500 kWh) could reduce its monthly peak demand 
to 100 kW at the price of increasing its consumption to an additional 10,000 kWh, the total 
electricity costs would be based upon 30,000 kWh and 100 kW.  This would result in a monthly 
electricity bill of $4,000; which would be down from the original $7,000 (Holtz, 1990).   The 
reduction of peak demand has been the source of several policy related studies by the Rand 
Corporation (Acton, et al., 1980) and the Brattle Group (Faruqui, et al., 2007) and could be one 
of the most significant factors that could impact overall energy usage and savings by using EC 
windows. 
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Apte, et al. (2008) used the 1999 Commercial Buildings Energy Consumption Survey 
(CBECS32

 

) data to research the effectiveness of different window types on energy performance 
for various climates and concluded that EC windows offered substantially larger energy savings 
than what would be possible with standard low-e products.  And EC window’s greater appeal 
was the fact that they offered peak demand reductions, a significant source of potential economic 
savings.  Lee, et al. (2006) found that the efficacy of the lighting control system will also affect 
the magnitude of savings.  The older 0 – 10 V ballast technology is inefficient at the low end of 
the dimming range – some systems consume ~35% of full power while providing ~10% of full 
light output. This is due to the power consumption of the electronic circuitry, which is fixed 
irrespective of dimming level. With the newer DALI® digital ballasts, the low end can be 
reduced to 17% of full power while providing ~1–9% of full light output. This again reiterates 
that EC windows are not a standalone energy saver but must be incorporated as part of the 
overall façade design for a facility (Lee, et al., 2006). 

 One of the limitations of EC windows despite its projected energy savings appears to be 
its cost.  While the cost is projected to decrease with future advancement and competition, EC 
windows are still considered relatively new technology with two years in the commercial market 
and currently manufactured by only one company in the U.S.  Even though first cost is usually 
the criterion given most consideration in decision-making for integrated façade systems, a focus 
on first cost typically fails to consider the benefits of particular investment on life-cycle cost, and 
factors that may not yet be quantifiable on a cost basis (Lee, et al., 2002).  There are several valid 
reasons for primary consideration of first cost; one is the physical limitation (“ceiling cost”) of 
the budget.  This may be simply because additional funding is not possible to obtain, or because 
the limitation is imposed for some other reason, such as a political process that is involved in all 
budgetary issues for the particular building. Such limitations are quite typical for public and 
institutional projects (Lee, et al., 2002); and tends to be the case for many projects in the USAF.   
However, the non-economic benefits of the technology are noteworthy and should be considered 
by the decision makers along with the economic factors; which are discussed in the next section.  

 

 

 

 

 

 

 

                                                 
32 A national sample survey that collects information on the stock of U.S. commercial buildings, their energy-related building 
characteristics, and their energy consumption and expenditures.  It contains 5,430 records, representing commercial buildings 
from the 50 States and the District of Columbia.  The survey is conducted quadrennially. 
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Appendix D 

An LCCA comprises of different financial inputs from a project that are analyzed to 
calculate the SIR and payback period which provide the decision makers with a relative scale of 
success and return on investment.  In order to conduct the analysis the following inputs are often 
considered (ODUSD, 2005): 

 
Investment costs are the initial costs of design, engineering, purchase, 
construction, and installation exclusive of sunk costs.  
Sunk costs are costs incurred before the time at which the LCC analysis 
occurs. Only cash flows that occur at present or in the future are pertinent to 
the LCC economic analysis.  
Recurring costs are future costs that are incurred uniformly and annually over 
the study period. These recurring costs may be energy costs or operation and 
maintenance costs.  
Nonrecurring costs are costs that do not uniformly occur over the study 
period. Non-recurring costs are typically maintenance, repair, or replacement 
costs.  
Replacement costs are future costs to replace a building energy system, energy 
conservation measure, or any component thereof, during the study period.  
Salvage value is the value of any building energy system removed or replaced 
during the study period or recovered through resale or remaining at the end of 
the study period. 
Study period is the time period covered by an LCC analysis. For Federal 
projects, the study period is typically either the estimated life of the system, the 
least common multiple of different alternatives’ lives, or a time period 
specified by the funding program -- plus a planning and construction period of 
up to five years, if appropriate. Federal guidelines for LCC outlined in the CFR 
limit the assumed system lifetime to a maximum of 25 years. With a planning 
and construction period (maximum of five years), the maximum study period 
is 30 years. Table 2 lists recommended study periods for different categories of 
energy and water conservation projects. 
Base date is the beginning of the first year of the study period, generally the 
date on which the LCC analysis is conducted. This is the date to which future 
cash flows are discounted to determine equivalent present value.  
Service date is the point in time during the study period when a building or 
building system is put into use, and operation-related costs (including energy 
and water costs) begin to be incurred. For convenience, the base date and the 
service date are frequently assumed to be the same. While this assumption does 
not reflect reality, it does greatly simplify the mathematics and is consistent 
with typical methods for calculating simple payback. In reality, there is 
normally a significant time period between the analysis and the service date of 
the project, typically 1-3 years.  
Planning and construction period is the time between the base date and the 
service date.                                                                           (ODUSD, 2005) 
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Recommended LCC Analysis Life of Energy and Water Projects (ODUSD, 2005). 
Category  Title  Description  
1  EMCS or HVAC 

Controls  
(10 years)  

Projects to control energy systems centrally to adjust 
temperature automatically, shed electrical loads, 
control motor speeds, or adjust lighting intensities  

2  Steam and 
Condensate 
Systems  
(15 years)  

Projects to install condensate lines, cross connect 
lines, distribution system loops; to repair or install 
insulation, and to repair or install steam flow meters 
and controls  

3  Boiler Plant 
Modifications  
(20 years)  

Projects to upgrade or replace central boilers or 
ancillary equipment to improve overall plant 
efficiency, including fuel switching or dual fuel 
conversions  

4  HVAC  
(20 years)  

Projects to install more energy efficient heating, 
cooling, ventilation, or hot water heating equipment, 
including the HVAC distribution system (ducts, 
pipes, etc.)  

5  Weatherization  
(20 years)  

Projects to improve the thermal envelope of a 
building, including daylighting, fixtures, lamps, 
ballasts, photocells, motion/IR sensors, light wells, 
highly reflective painting  

6  Lighting Systems  
(15 years)  

Projects to install replacement lighting 
system/controls, including daylighting, fixtures, 
lamps, ballasts, photocells, motion/IR sensors, light 
wells, highly reflective painting  

7  Energy Recovery 
Systems  
(20 years)  

Projects to install heat exchangers, regenerators, 
heat reclaim units or to recapture energy lost to the 
environment  

8  Electrical Energy 
Systems  
(20 years)  

Projects to increase energy efficiency of an 
electrical device or system or to reduce cost by 
reducing peak demand  

9  Renewable 
Energy Systems  
(20 years)  

Any project utilizing renewable energy. This 
includes active solar heating, cooling, hot water, 
industrial process heat, photovoltaic, wind, biomass, 
geothermal, and passive solar applications  

10  Facility Energy 
Improvements  
(20 years)  

Multiple category projects or those that do not fall 
into any other category, to include water 
conservation projects.  
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Some of the economic terms that are internally calculated during the LCC and embedded in 
BLCC are described below: 
 

Present Value (PV) is the time-equivalent value of past, present, or future cash 
flows as of the beginning of the base year, or the base date.  
Discounting is the process of calculating present values based on future 
cash flows. For purposes of mathematical convenience, cash flows are 
normally assumed to occur at the end of each year, although DOD has 
historically used middle-of-year cash flow convention. In OMB and FEMP 
studies, all annually recurring cash flows (e.g., operational costs) are 
discounted from the end of the year in which they are incurred; in MILCON 
studies they are discounted from the middle of the year. All single amounts 
(e.g., replacement costs, residual values) are discounted from their dates of 
occurrence (Fuller, 2008). Either method is consistent with federal 
requirements and will result in the same decisions, as long as a single 
method is consistently applied to all considered alternatives.  
Discount rate is the rate of interest that reflects the Government’s time 
value of money or opportunity cost. For Federal energy projects, the rate is 
determined annually by DOE based on short-term treasury rates but is 
limited to a low of 3% and a high of 10% regardless of interest rates. 
Energy project analyses should use the discount rate for the current fiscal 
year as reported in NISTIR 85-3273 and 4942. The discount factors are 
embedded in LCC software such as BLCC5 and other federal LCC 
computer programs (Fuller, 2008). 
Present Value factors are discount factors that are calculated based on a 
given time period and discount rate, which, when multiplied by a future 
dollar amount, give the equivalent present value as of the base date.  
Single Present Value (SPV) factors are used to convert single future 
amounts to PVs .  
Uniform Present Value (UPV) factors are used to convert annually 
recurring amounts to PV. Modified Uniform Present Value (UPV*) 
factors are used to convert annually recurring amounts where amounts 
change based on escalation rates or where costs change differently from 
inflation, as in many types of energy costs. UPV* factors based on expected 
fuel price inflation for different energy types and regions of the country are 
published annually in NISTIR 85-3273 and 4942. Figure 15-3 summarizes the 
three basic PV factors used in Federal energy project analysis.                                                  
(ODUSD, 2005) 
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Appendix E 

The mathematics behind MC are given below as described from Emblemsvag (2003) on use of 

MC for LCC. 

 Given that x is the required quantity of the mathematical expectation of 
M  of a certain random variable the MC method of determining the 
approximate value of x consists of an N-fold sampling of the value of the 
variable  in a series of independent tests, , and the 
computation of their mean value: 
 
         (eq. 2) 
 
Then, according to the law of large numbers (Bernoulli’s or Chebyshev’s 
Theorem): 
 
        (eq. 3) 
 
With a probability that is close to unity for a sufficiently large N.  A 
traditional example in statistics is the tossing of a die and calculating the 
probability of obtaining a total of three when tossing two ordinary dice.  
Simulating this problem using a MC method is straightforward.  Simulate 
the tossing in N trials (each trial representing a toss), count the number of 
trials when one gets threes, and then estimate the probability as 
 
                                    (eq. 4) 
 
 
 
The error in this estimate is measured by the standard deviation , where 
 

          (eq. 5) 

 
However, since we assume we do not know p, the error term can only be 
estimated statistically.  In the general case, for every and every 

, there exists a number N of trials, such that with a probability greater than 
, the frequency of occurrences of an event ( ) will differ from the 

probability p of the occurrence of this event by less than : 
 

         (eq. 6) 
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The degree of certainty of the error is .  By investigating the error 
term, we see that the accuracy is highly dependent on the number of trials 
(N) performed in the simulation.  By simplifying Chebyshev’s inequality, 
we can estimate the  as 
          (eq. 7) 
 
We see that to improve an estimate tenfold, we need to run a hundred times 
more trials.  This equation holds for all cases.  However, if we assume that 
the distribution of the event is approximately Gaussian, we get the 
following: 
          (eq. 8) 
 
Thus, we see that in most cases (Gaussian behavior is most common, and all 
other behavior tends to approach the Gaussian behavior according to the 
Central Limit Theorem), the error also depends on the variance of each 
independent test trial.        

(Emblemsvag, 2003) 
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Appendix F 

 

AFCESA Prototypical USAF Office Building Description 
Description Baseline Parameter Reference 

Building 
Description 

-2-Story (2 floors above grade) 
-Oriented North 
-Floor to Floor height: 12 ft 
-Floor to Ceiling height: 9 ft 
-36,000 sq ft 

(Pratt, 2006) 
 
 
 

(AFCESA, 2007) 
Roof Construction 
 

-Metal frame, > 24 in o.c. 
-3-ply built up roof (BUR) 
-Gravel finish 
-3 in polysocyanurate (R-21) insulation 

(Pratt, 2006) 

Wall construction 
 

-Metal frame, 2x6, 24 in o.c. 
-Brick exterior 
-Batt insulation (R-19) 
-Additional 1 in polyurethane (R-6) 
insulation 

(Pratt, 2006) 

Windows 
 

-Single pane, 1/8” 
-Aluminum frame w/o thermal break 
- Window to wall ratio (WWR) = 45% 
-No skylights 
-Interior shades set at 50% overall 

(Pratt, 2006) 
 
 
 

(Lee, et al., 2004) 
Heating, 
Ventilation, and Air 
Conditioning 
(HVAC) system 
 

-Packaged Single Zone Direct Expansion 
(DX) with furnace 11.25-20 ton 
-Minimum 0.5 cfm/sq ft 
-Continuous Fan 
-Setpoints: 
         Occupied: Cool: 76 °F Heat: 70 °F 
         Unoccupied: Cool: 82 °F Heat: 64 °F 

(Pratt, 2006) 

Schedule 
 

-7 am – 5 pm M-F, no weekends or 
holidays 
**Note: HVAC starts one hour before and 
stops one hour after scheduled duty hours 

(Pratt, 2006) 
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Appendix G 

SAGE Electrochromic Inc. Technical Specification Sheet of Currently Available EC Windows (Sage 
Electrochromic, 2006a). 
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Appendix H 
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Appendix I 
 

Cost Estimate obtained directly from the manufacturer, Sage Electrochromics, Inc. (2008) based 
on design of conceptual office facility. 
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Appendix J 
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Appendix K 
 

 
This section discusses in-depth key economic metrics recommended for use by NIST 

Handbook 135.  SIR is a measure of economic performance for a project alternative that 
expresses the relationship between its savings and its increased investment cost (in present value) 
as a ratio (Fuller, et al., 1996).  It is a relative measure and must not be used for choosing among 
mutually exclusive alternatives.  As explained in chapter 2, SIR must be greater than 1.25 for 
DOD energy projects to be considered for funding (ODUSD, 2005).  It is the preferred measure 
to rank projects and is calculated as follows (Fuller, et al., 1996): 

 

 SIRA:BC =        (eq. 2) 

 
 
Where, 
 
 
SIRA:BC  =     Ratio of operational savings to investment- 

Related additional costs, computed for the  
alternative (A) relative to the base case (BC) 

 
∆E   = (EBC – EA)   Savings in energy costs attributable to the  

alternative 
 
∆W   = (WBC – WA)   Savings in water costs  
 
∆OM&R = (OM&RBC – OM&RA)  Operations, maintenance, and repair costs 
 
∆IO = (IA – IBC)   Additional initial investment cost required  

for the alternative relative to the base case 
 
∆Repl   = (ReplA – ReplBC)  Difference in capital replacement costs 
 
∆Res  =     Residual value  
 
 
 

 The AIRR is a measure of the annual percent yield from a project investment over the 
study period (Fuller, et al., 1996) and is a relative measure.  It is measured against the minimum 
attractive rate of return (MARR) which is generally equaled to the discount rate, currently at 3 
percent set by FEMP (Fuller, et al., 1996). The AIRR must be greater than the real discount rate 
in order to be considered an attractive investment and is calculated as follows (Fuller, et al., 
1996): 
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  AIRR =                (eq. 3) 
 
 
 Where, 
 
 r  = reinvestment rate (real discount rate) 
 SIR  = Savings to Investment Ratio 
 N = number of years in the study period 
 
  

Payback is defined as the time it takes to recover the initial investment costs; it is a 
relative measure and cannot be valid for use if there are multiple mutually-exclusive alternatives 
(Fuller, et al., 1996).  Currently the payback method used by most practitioners is SPB; however, 
DPB is required by the DOD Energy Manager’s Handbook (ODUSD, 2005).  Generally, the 
shorter the payback, the more attractive the investment; however, it must not exceed 10 years to 
compete for private funding under ESPC (ODUSD, 2005).  The general calculations for payback 
are shown below, where the minimum number of years, y, is calculated (Fuller, et al., 1996): 
 

                (eq. 4) 

 
 Where, 
 
 ∆E t   = (EBC – EA)t   Savings in energy costs in year t 
  

∆Wt   = (WBC – WA)t   Savings in water costs in year t 
  

∆OM&Rt  = (OM&RBC – OM&RA)t Difference in OM&R costs in year t 
 
 ∆Replt   = (ReplA – ReplBC)t  Difference in capital replacement cost in  

year t 
  

∆Rest  = (ResA – ResBC)t  Difference in residual value in year t  
(usually zero in all but last year of study 
period) 

  
d   =     discount rate 

  
∆I0   = (IA – IBC)0   Additional initial investment cost 
 

LCC was described at length in the literature review in chapter 2; therefore only the 
equation will be revisited here, shown below (Fuller, et al., 1996): 
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LCC = I + Repl + E + W + OM&R + O – Res                                (eq. 5) 

 
Where, 
 
LCC  = Total LCC in present-value (PV) dollars of a given alternative 
 
I  = PV investment costs (if incurred at base date, not discounted) 
 
Repl  = PV capital replacement costs 
 
E   = PV of energy costs 
 
W   = PV of water costs 
 
OM&R  = PV of non-fuel operating, maintenance and repair costs 
 
O   = PV of other costs (e.g., contract costs for ESPCs or UESCs) 
 
Res   = PV residual value (resale value, salvage value) less disposal costs 
 

 

NS is used when benefits occur primarily in the form of future operational cost 
reductions; it calculates the net amount, in present-value dollars, which a project alternative is 
expected to save over the study period (Fuller, et al., 1996).  The basic equation is shown below 
(Fuller, et al., 1996): 

 
  NS = LCCBase Case – LCCAlternative               (eq. 6) 
 

The final step prior to running the simulation will be to determine the number of iteration 
or trials, which should be significantly high (~10,000) (Emblemsvag, 2003).  Our MCS model 
uses 10,000 iteration for each run.   
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Appendix L 

 
 
 
 

PV SDHW WALL DAYLT POOL
AL TVA $0.15/kWh PV 65% 45% 45%
AK 45% 45% 45%

TEP $2/W AC; APS 
$2/W DC, Less than 5 

kW 

PV

50% 45%
APS $350/single 

system
SDHW

49%
AR 45% 45% 45%

$4.50/W/50% (>30kW-
1.5MW) 

PV
59% 45% 45%

LADWP 
$6/W_85%_$2M

PV
62% 45% 45%

CO 45% 45% 45%
CT 45% 45% 45%
DE 35%_$250K PV, SDHW 52% 52% 45%

JEA $4/W, $50K PV 51% 45%
JEA 30% POOL, SDHW 51% 51%

GA TVA $0.15/kWh PV 65% 45% 45%
35%, $250 K 

Maximum
HECO, HELCO and 

MECO 
SDHW

65% 65% 65% 23%
Kauai 50% SDHW 65%

ID 45% 45% 45%
60% or $6/W, $300K 

max
PV

57%
50%_$150K; SDHW, WALL 55% 55%

ComEd 
$1.25/W_50kW

PV
66%

30%, $30K, >20kW PV 51%

30%_$30K
PV, WALL, 

SDHW 51% 51%
IA 45% 45% 45%
KS 45% 45% 45%
KY TVA $0.15/kWh PV 63% 45% 45%
LA 45% 45% 45%
ME 45% 45% 45%
MD 15%, up to $2K for 

small systems
PV, WALL, 

SDHW 50% 47% 47%
100% tax 
deduction;

PV
54% 54% 54%

100% excise tax 
exemption

PV, WALL, 
SDHW, DAYLT

MI 45% 45% 45%
MN Y $2/W for small PV PV 45% 45% 45%
MS TVA $0.15/kWh PV 65% 45% 45%
MO 45% 45% 45%
MT

35% PV, $4/W_50kW max
PV, SDHW, 

WALL 65% 55% 55%

Percent of Present Worth - Effect of 
Federal and State Incentives 

Y

AZ

MA

IN

IL

HI

YFL

CA

15%

State Buy Down, 
Grant, Production 

Incent.

Techs That Get 
State Incentives

State Sales 
Tax 

Exemption

State State Tax Credit, 
Deduction, 
Exemption
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PV SDHW WALL DAYLT POOL
NE 45% 45% 45%
NV Boulder, small SDHW SDHW 45% 51% 45%
NH 45% 45% 45%
NJ Y $5.50/W_70% PV 77% 45% 45%
NM $0.01/kWh, Systems 

>10 MW 
PV

45% 45% 45%
NY $5/W, >10kW, 

NYSERDA
PV

78% 45% 45%
NC

35% up to $250K 
PV, POOL, 

DAYLT 65% 45% 45% 23% 23%
ND 15% PV, SDHW, 

WALL, POOL 54% 54% 54% 10%
OH Y 45% 45% 45%
OK $0.0075/kWh 46% 45% 45%
OR

35%
PV, $1.75/W DC PV, SDHW, 

WALL, DAYLT 65% 65% 65% 23%
PA PECO $4/W_$20K+ 

$1/kWh/1yr
PV

55% 45% 45%
RI Y $5/W, or 50% PV 55% 45% 45%
SC 45% 45% 45%
SD 45% 45% 45%
TN TVA $0.15/kWh PV 64% 45% 45%
TX 45% 45% 45%
UT

10%, $50K
PV, SDHW, 

WALL 51% 51% 51%
VT Y 45% 45% 45%
VA 45% 45% 45%
WA Y 45% 45% 45%
WV 45% 45% 45%

$2/kWh_1st yr. Gen, 
50% or $50K; 

PV
78%

Targeted at 25% SDHW, WALL 50% 50%
WY Y 45% 45% 45%

Percent of Present Worth - Effect of 
Federal and State Incentives 

WI

State Buy Down, 
Grant, Production 

Incent.

Techs That Get 
State Incentives

State Sales 
Tax 

Exemption

State State Tax Credit, 
Deduction, 
Exemption
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Appendix M 
(Climate Zone 1) 
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(Climate Zone 2) 
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(Climate Zone 3) 
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(Climate Zone 4) 
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(Climate Zone 5) 
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Appendix N 

 
Below figures show additional economic measures in addition to SIR and payback.  Both 

net savings (NS) and adjusted internal rate of return (AIRR) trends are consistent with SIR and 
payback economic measures and add little additioinal insight.  AIRR, however, tends to show a 
more optimistic result when compared to SIR and payback with all the results, except for cold 
climates (CLIMATE ZONES 1 – 2), that have return that is well above the discount rate of 3%. 
 

 
Figure M -1. Net Savings summary results for EC windows in all climate zones 

 

 
Figure M-2. AIRR summary results for EC windows in all climate zones 
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Appendix O 
 

 eQUEST simulation data for all climate zones 
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Appendix P 
 
 

Example: Decision maker wants to know the probability that net annual savings of EC window 
dropping below $100,000. 
 
Given from MCS simulation: 

 
 
 
 

 
 

So, P(X<$100,000) = ? 
 
Use Z-score where, 
 

 
 
 
 σ

µ−
=

xz
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And, 

 
 
 
 

Therefore, P(X<$100,000) = 13.36% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0 50000 100000 150000 200000 250000



 

138 

 

Appendix Q 
 

Below are the Monte Carlo simulation output for all climate zones for the policy intervention 
case; therefore, the outputs are for electrochromic (EC) windows only. 

 
 
Minot AFB (Climate Zone 1) 
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Offut AFB (Climate Zone 2) 
 

 
 

 
 

 
Beale AFB (Climate Zone 3 – low utility cost) 

 

  



 

140 

 

  
 
 
McGuire AFB (Climate Zone 3 – high utility cost) 
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Pope AFB (Climate Zone 4) 
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Eglin AFB (Climate Zone 5) 
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Appendix R 
 

Monte Carlo Simulation results for all project data from 2008 USAF energy projects.  Project 
designation is “P” for project and number.  Detailed project data is available in Appendix O. 
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Appendix S 
 
2008 USAF Energy Projects used for comparison analysis of BLCC 5 vs. MCS 
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